Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Couette symmetry

This velocity profile is commonly called drag flow. It is used to model the flow of lubricant between sliding metal surfaces or the flow of polymer in extruders. A pressure-driven flow—typically in the opposite direction—is sometimes superimposed on the drag flow, but we will avoid this complication. Equation (8.51) also represents a limiting case of Couette flow (which is flow between coaxial cylinders, one of which is rotating) when the gap width is small. Equation (8.38) continues to govern convective diffusion in the flat-plate geometry, but the boundary conditions are different. The zero-flux condition applies at both walls, but there is no line of symmetry. Calculations must be made over the entire channel width and not just the half-width. [Pg.290]

This section focuses on steady and unsteady hydrodynamic modes that emerge as the rotational speed of the inner cylinder (expressed by Ta) and pressure-driven axial flow rate (scaled by Re) are varied, while the outer cylinder is kept fixed. These modes constitute primary, secondary and higher order bifurcations, which break the symmetry of the base helical Couette-Poiseuille (CP) flow and represent drastic changes in flow structure. Figure 4.4.2 presents a map of observed hydrodynamic modes in the (Ta, Re) space, and marks the domain where all of the hydrodynamic modes that interest us appear. We will return to this figure shortly. [Pg.421]

M. Avgousti and A.N. Beris, Viscoelastic Taylor-Couette flow bifurcation analysis in the presence of symmetries, Proc. Roy. Soc. London A, 443 (1993) 17-37. [Pg.233]

A very interesting series of studies of the influence of end effects in the rotating concentric cylinder problem has been published by Mullin and co-workers T. Mullin, Mutations of steady cellular flows in the Taylor experiment,J. Fluid Mech. 121, 207-18 (1982) T. B. Benjamin and T. Mullin, Notes on the multiplicity of flows in the Taylor experiment, J. Fluid Mech. 121, 219-30 (1982) K. A. Cliff and T. Mullin, A numerical and expwerimental study of anomalous modes in the Taylor experiment, J. Fluid Mech. 153, 243-58 (1985) G. Pfister, H. Schmidt, K. A. Cliffe and T. Mullin, Bifurcation phenomena in Taylor-Couette flow in a very short annulus, J. Fluid Mech. 191, 1-18 (1988) K. A. Cliffe, 1.1. Kobine, and T. Mullin, The role of anomalous modes in Taylor-Couette flow, Proc. R. Soc. London Ser. A 439, 341-57 (1992) T. Mullin, Y. Toya, and S. I. Tavener, Symmetry breaking and multiplicity of states in small aspect ratio Taylor-Couette flow, Phys. Fluids 14, 2778-87 (2002). [Pg.184]


See other pages where Couette symmetry is mentioned: [Pg.297]    [Pg.297]    [Pg.429]    [Pg.170]    [Pg.325]    [Pg.129]    [Pg.400]    [Pg.283]    [Pg.307]    [Pg.291]    [Pg.397]    [Pg.112]   
See also in sourсe #XX -- [ Pg.297 ]




SEARCH



Couette

© 2024 chempedia.info