Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Correlation consistent basis sets ECPs

Rappe, Smedley and Goddard (1981) Stevens, Basch and Krauss (1984) Used for ECP (effective core potentitil) calculations Dunning s correlation consistent basis sets (double, triple, quadmple, quintuple and sextuple zeta respectively). Used for correlation ctilculations Woon and Dunning (1993)... [Pg.175]

Four basis sets were examined BSl and BS3 are based on the Couty-Hall modification of the Hay and Wadt ECP, and BS2 and BS4 are based on the Stuttgart ECP. Two basis sets, BSl and BS2, are used to optimize the geometries of species in the OA reaction, [CpIr(PH3)(CH3)]++ CH4 [CpIr(PH3)(H)(CH3)2]+, at the B3LYP level, while the other basis sets, BS3 and BS4, are used only to calculate energies at the previously optimized B3LYP/BS1 geometries. BSl is double-zeta with polarization functions on every atom except the metal atom. BS2 is triple-zeta with polarization on metal and double-zeta correlation consistent basis set (with polarization functions) on other atoms. BS3 is similar to BSl but is triple-zeta with polarization on the metal. BS4 is similar to BS2 but is triple-zeta with polarization on the C and H that are involved in the reaction. The basis set details are described in the Computational Details section at the end of this chapter. [Pg.326]

In order to benchmark the ECP results for Hg, all-electron correlation consistent basis sets were also developed both with and without the inclusion of... [Pg.138]

Another recent set of pseudopotentials for the 4p, 5p, and 6p elements has been developed by Dyall (1998, 2002). These ECPs are designed to be the ECP-equivalent to the correlation-consistent basis sets of Dunning insofar as (i) prescriptions for double- and... [Pg.179]

As an alternative to all-electron calculations using either 4-component or DKH calculations, relativistic pseudopotentials (PPs) or effective core potentials (ECPs) provide a very convenient route to accurately including relativistic effects into electronic structure calculations [38,39]. Since PPs replace the low-lying core electrons, their use also results in smaller basis sets. Correlation consistent basis sets... [Pg.200]

Other, scalar relativistic effects are usually minor. Among them, the most important is the contraction of s-orbitals caused by the increase in electron mass due to high velocity near the nucleus. Except in the most careful work, such effects are modeled using relativistic effective core potentials (ECPs), also called core pseudopotentials [76]. When an ECP is used, the corresponding valence basis set should be used for the remaining electrons. A small-core ECP, in which fewer electrons are replaced by the effective potential, is a weaker approximation and therefore more reliable than the corresponding large-core ECP. The selection of basis sets to accompany ECPs is more restricted than the selection of all-electron basis sets, but appropriate correlation-consistent basis sets are available for heavy p-block elements [77-80]. [Pg.18]

For the related [CpIr(PH3)(CH3)]+ system, four basis sets were used. Basis set one (BS1) is the same as the ones described above for Ir and P, but the C and H are described as D95. Basis set two (BS2) is the Stuttgart relativistic, small core ECP basis set (49) augmented with a polarization function for Ir, and Dunning s correlation consistent double-zeta basis set with polarization function (50) for P, C and H. Basis set three (BS3) is the same as BS1 except the d-orbital of Ir was described by further splitting into triple-zeta (111) from a previous double-zeta (21) description and augmented with a f-polarization function (51). Basis set four (BS4) is the same as BS2 for Ir, P, and most of the C and H, but the C and H atoms involved in the oxidative addition were described with Dunning s correlation consistent triple-zeta basis set with polarization. [Pg.345]

The basis sets used in the reactions including F and Cl are the augmented correlation consistent polarized valence double zeta (aug-cc-pVDZ) sets [16]. In the reactions including Br and I, the relativistic effective core potential (ECP) due to Stevens et al. [17,18] and their associated basis sets were used for Br and I, and the cc-pVDZ set for H. The basis sets of Br and I were augmented by adding a d polarization function with an exponent of 0.389 (Br) / 0.266 (I) and sp diffuse functions with an exponent 0.03574 (Br) / 0.03007 (I). The diffuse p polarization function of the aug-cc-pVDZ set of H was omitted for consis-... [Pg.69]


See other pages where Correlation consistent basis sets ECPs is mentioned: [Pg.126]    [Pg.126]    [Pg.271]    [Pg.135]    [Pg.976]    [Pg.135]    [Pg.847]    [Pg.848]    [Pg.852]    [Pg.35]    [Pg.157]    [Pg.696]    [Pg.878]    [Pg.42]    [Pg.119]   
See also in sourсe #XX -- [ Pg.126 ]

See also in sourсe #XX -- [ Pg.126 ]




SEARCH



Consistent basis sets

Correlation consistent basis sets

Correlation-consistent

Correlation-consistent basis

ECP

© 2024 chempedia.info