Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copyright electronic media

All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder except in accordance with the provisions of the Copyright. [Pg.1392]

Fig. 5.10 Relative band edge diagram for FeS2 and the energy position of some electron donor species. The thermodynamic reactions corresponding to corrosion processes at the anodic and cathodic sides are indicated as decomposition potentials due to holes, fip dec, and to electrons, n,dec> respectively. r]c and are the cathodic and anodic overpotentials, respectively, for the decomposition reaction of pyiite crystals in acid medium. (Reproduced from [159], Copyright 2009, with permission from Elsevier)... Fig. 5.10 Relative band edge diagram for FeS2 and the energy position of some electron donor species. The thermodynamic reactions corresponding to corrosion processes at the anodic and cathodic sides are indicated as decomposition potentials due to holes, fip dec, and to electrons, n,dec> respectively. r]c and are the cathodic and anodic overpotentials, respectively, for the decomposition reaction of pyiite crystals in acid medium. (Reproduced from [159], Copyright 2009, with permission from Elsevier)...
Fig. 9.23. Square-well model for electronic mixing between two discrete states. The displacement toward resonance is derived from modulation of the energy levels by the coupling of the electronic levels to the nuclear motion of the surrounding medium. In configuration A, the electron is localized at the donor site B corresponds to the condition of quantum resonance between the two states C corresponds to the nuclear configuration in which the electron becomes localized on the acceptor site (Reprinted from R. J. D. Miller, G. McLendon, A. J. Nozik, W. Schmickler, and F. Willig, Surface Electron Transfer Processes, p. 4, copyright 1995 VCH-Wiley. Reprinted by permission of John Wiley Sons, Inc.)... Fig. 9.23. Square-well model for electronic mixing between two discrete states. The displacement toward resonance is derived from modulation of the energy levels by the coupling of the electronic levels to the nuclear motion of the surrounding medium. In configuration A, the electron is localized at the donor site B corresponds to the condition of quantum resonance between the two states C corresponds to the nuclear configuration in which the electron becomes localized on the acceptor site (Reprinted from R. J. D. Miller, G. McLendon, A. J. Nozik, W. Schmickler, and F. Willig, Surface Electron Transfer Processes, p. 4, copyright 1995 VCH-Wiley. Reprinted by permission of John Wiley Sons, Inc.)...

See other pages where Copyright electronic media is mentioned: [Pg.1063]    [Pg.2106]    [Pg.3]    [Pg.417]    [Pg.102]    [Pg.4]    [Pg.531]    [Pg.358]    [Pg.2106]    [Pg.311]    [Pg.72]    [Pg.28]    [Pg.209]    [Pg.529]    [Pg.1050]    [Pg.273]    [Pg.363]    [Pg.923]    [Pg.2107]    [Pg.2540]    [Pg.177]   
See also in sourсe #XX -- [ Pg.81 , Pg.82 , Pg.83 ]

See also in sourсe #XX -- [ Pg.343 ]




SEARCH



Electronic media

© 2024 chempedia.info