Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Convection Effects in Low-Reynolds-Number Flows

In the preceding chapters, we focused mainly on fluid dynamics problems, with only an occasional problem involving heat or mass transfer. In this chapter, we change our focus to problems of heat (or single-solute mass) transfer. Specifically, we address the problem of heat (or mass) transfer from a finite body to a surrounding fluid that is moving relative to the body. In this chapter, we concentrate on problems in which the fluid motion is viscous in nature, and thus is known (or can be calculated) from creeping-flow theory. Later, after we have considered flows at nonzero Reynolds number, we will also consider heat (or mass) transfer for this situation. [Pg.593]

Following this initial topic, we then consider the opposite limit in which the transport process is dominated by convection. In this case, the concept of a thermal boundary layer plays a critical role. [Pg.593]


See other pages where Convection Effects in Low-Reynolds-Number Flows is mentioned: [Pg.593]    [Pg.594]    [Pg.596]    [Pg.598]    [Pg.600]    [Pg.602]    [Pg.604]    [Pg.606]    [Pg.608]    [Pg.610]    [Pg.612]    [Pg.614]    [Pg.616]    [Pg.618]    [Pg.620]    [Pg.622]    [Pg.624]    [Pg.626]    [Pg.628]    [Pg.630]    [Pg.632]    [Pg.634]    [Pg.636]    [Pg.638]    [Pg.640]    [Pg.642]    [Pg.644]    [Pg.646]    [Pg.648]    [Pg.650]    [Pg.652]    [Pg.654]    [Pg.656]    [Pg.658]    [Pg.660]    [Pg.662]    [Pg.664]    [Pg.666]    [Pg.668]    [Pg.670]    [Pg.672]    [Pg.674]    [Pg.676]    [Pg.678]    [Pg.680]    [Pg.682]    [Pg.684]    [Pg.686]    [Pg.688]    [Pg.690]    [Pg.692]   


SEARCH



Convection Reynolds number

Effective Reynolds number

Flow number

Reynold

Reynolds number

© 2024 chempedia.info