Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Continuum theory nematics

Continuum theory has also been applied to analyse tire dynamics of flow of nematics [77, 80, 81 and 82]. The equations provide tire time-dependent velocity, director and pressure fields. These can be detennined from equations for tire fluid acceleration (in tenns of tire total stress tensor split into reversible and viscous parts), tire rate of change of director in tenns of tire velocity gradients and tire molecular field and tire incompressibility condition [20]. [Pg.2558]

The rigid nature of the mesophase pitch molecules creates a strong relationship between flow and orientation. In this regard, mesophase pitch may be considered to be a discotic nematic liquid crystal. The flow behavior of liquid crystals of the nematic type has been described by a continuum theory proposed by Leslie [36] and Ericksen [37]. [Pg.129]

When De 1 and molecular elasticity is negligible, the flow properties of polymeric nematics can, in principle, be described by the Leslie-Ericksen equations (see Section 10.2.3). However, at moderate and high De, the Leslie-Ericksen continuum theory fails, and a molecular theory is required to describe the effect of flow on the distribution of molecular orientations. [Pg.520]

At low enough shear rates, polymeric nematics ought to obey the same Leslie-Ericksen continuum theory that describes so well the behavior of small-molecule nematics. The main difference is that polymers have a much higher molecular aspect ratio than do small molecules, which leads to greater inequalities in the the numerical values of the various viscosities and Frank constants and to much higher viscosities. [Pg.526]

In the following sections of this chapter we shall apply the continuum theory to study the behaviour of the nematic phase in various physical situations. For convenience we set out below the most important equations of the theory which we shall be referring to constantly ... [Pg.97]


See other pages where Continuum theory nematics is mentioned: [Pg.11]    [Pg.225]    [Pg.226]    [Pg.451]    [Pg.538]    [Pg.546]    [Pg.2667]    [Pg.2955]    [Pg.59]    [Pg.85]    [Pg.85]    [Pg.86]    [Pg.88]    [Pg.90]    [Pg.92]    [Pg.94]    [Pg.96]    [Pg.98]    [Pg.100]    [Pg.102]    [Pg.104]    [Pg.106]    [Pg.108]    [Pg.110]    [Pg.112]    [Pg.114]    [Pg.116]    [Pg.118]    [Pg.120]    [Pg.122]    [Pg.124]    [Pg.126]    [Pg.128]    [Pg.130]    [Pg.132]    [Pg.134]    [Pg.136]    [Pg.138]    [Pg.140]    [Pg.142]    [Pg.144]    [Pg.146]    [Pg.148]   


SEARCH



Continuum theory of nematics

Continuum theory of the nematic state

Nematic liquid crystal continuum theory

© 2024 chempedia.info