Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermotoga maritima cold shock protein

Fig. 4. Stereoviews of TmCsp. (A) Stereoview of a superposition of the backbone atoms of the 21 accepted structures of TmCsp. (B) Stereoview of a representative ribbon diagram of TmCsp. The secondary-structure elements are indicated. (C) Stereoview of the solution NMR structure of TmCsp (rotated ribbon diagram). Location of a possible peripheral ion cluster. Reprinted from Eur. J. Biochem., Vol. 268, W. Kremer, B. Schuler, S. Harrieder, M. Geyer, W. Gronwald, C. Welker, R. Jaenicke and H. R. Kalbitzer, Solution NMR structure of the cold-shock protein from the hyperthermo-philic bacterium Thermotoga maritima , pp. 2527-2539, Copyright 2001, with permission from Blackwell Science. Fig. 4. Stereoviews of TmCsp. (A) Stereoview of a superposition of the backbone atoms of the 21 accepted structures of TmCsp. (B) Stereoview of a representative ribbon diagram of TmCsp. The secondary-structure elements are indicated. (C) Stereoview of the solution NMR structure of TmCsp (rotated ribbon diagram). Location of a possible peripheral ion cluster. Reprinted from Eur. J. Biochem., Vol. 268, W. Kremer, B. Schuler, S. Harrieder, M. Geyer, W. Gronwald, C. Welker, R. Jaenicke and H. R. Kalbitzer, Solution NMR structure of the cold-shock protein from the hyperthermo-philic bacterium Thermotoga maritima , pp. 2527-2539, Copyright 2001, with permission from Blackwell Science.
C/N] FmCsp, the cold shock protein from the hypertermophilic bacterium Thermotoga maritima 63 25 228 ... [Pg.182]

Fig. 7. Conservation of the unfolding/folding mechanism of cold-shock proteins (Csp) from B. subtilis (Bs), B. caldolyticus (fid), and Thermotoga maritima (Tm). (a) Equilibrium unfolding transitions of Csp from Bs (A), Be ( ), and Tm ( ) induced by GdmCI at 25° and monitored by intrinsic fluorescence. Least-squares fit analyses based on the two-state model yield stabilization energies AGstab = 11.3,20.1, and 26.2 kJ/mol for Csp from Bs, Be, and Tm, respectively, (b) Kinetics of unfolding (open symbols) and refolding (closed symbols) of Bs (A, A), Be ( , ) and T Csp (O, ), respectively. The apparent rate constants, X, are plotted against the GdmCI concentration. The fits are on the basis of the linear two-state model. ... Fig. 7. Conservation of the unfolding/folding mechanism of cold-shock proteins (Csp) from B. subtilis (Bs), B. caldolyticus (fid), and Thermotoga maritima (Tm). (a) Equilibrium unfolding transitions of Csp from Bs (A), Be ( ), and Tm ( ) induced by GdmCI at 25° and monitored by intrinsic fluorescence. Least-squares fit analyses based on the two-state model yield stabilization energies AGstab = 11.3,20.1, and 26.2 kJ/mol for Csp from Bs, Be, and Tm, respectively, (b) Kinetics of unfolding (open symbols) and refolding (closed symbols) of Bs (A, A), Be ( , ) and T Csp (O, ), respectively. The apparent rate constants, X, are plotted against the GdmCI concentration. The fits are on the basis of the linear two-state model. ...

See other pages where Thermotoga maritima cold shock protein is mentioned: [Pg.124]    [Pg.182]    [Pg.440]    [Pg.464]    [Pg.468]    [Pg.65]    [Pg.211]   


SEARCH



Cold shock protein

Shock proteins

Thermotoga maritima

© 2024 chempedia.info