Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalamin vitamin methyl

The vitamin cobalamin (vitamin Bjj) is reduced and activated in the body to two forms, adeno-sylcobalamin, used by methylmalonyl CoA mutase, and methylcobalamin, formed from methyl-THF in the N-methyl THF-homocysteine methyltransferase reaction. These are the only two enzymes that use vitamin (other than the enzymes that reduce and add an adenosyl group to it). [Pg.250]

Researchers studying the metalloenzyme hydrogenase would like to design small compounds that mimic this enzyme s ability to reversibly reduce protons to H2 and H2 to 2H+, using an active center that contains iron and nickel. Cobalamins (vitamin and its derivatives) contain an easily activated Co-C bond that has a number of biological functions, one of which is as a methyl transferase, 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR). This enzyme converts homocysteine (an amino acid that has one more CH2 group in its alkyl side chain than cysteine see Figure 2.2) to methionine as methylcobalamin is converted to cobalamin. [Pg.22]

The loss of a methyl group from AdoMet in each of the reactions yields S-ad-enosylhomocysteine (AdoHcy) and this is subsequently hydrolysed to adenosine and Hey by AdoHcy-hydrolase. Hey sits at a metabolic branch point and can be remethylated to methionine by way of two reactions. One is the 5-methyltetrahydrofo-late dependent reaction catalysed by methionine synthase, which itself is reductively methylated by cobalamin (vitamin B12) and AdoMet, requiring methionine synthase reductase. 5-Methyltetrahydrofolate is generated from 5,10-methylenetetrahydrofo-late (MTHF) by MTHF reductase. The second remethylation reaction is catalysed by betaine methyltransferase, which is restricted to the liver, kidney and brain, while methionine synthase is widely distributed. [Pg.91]

Cobalamin (vitamin B12) Methionine cycle intermediate methyl carrier in the remethylation of homocysteine to methionine cofactor for methionine synthase... [Pg.231]

Propionyl CoA is the product from the catabolism of valine, isoleucine, methionine, and odd-numbered fatty acids. The carboxylation reaction, found in the mitochondria, produces methyl malonyl CoA. The latter undergoes a cobalamin (vitamin Bj2)-catalyzed rearrangement, forming succinyl CoA, which is metabolized further in the Krebs cycle. [Pg.404]

Methylation is the addition of a carbon atom to a molecule, usually causing a change in the function of the methylated molecule. For example, methylation of the neurotransmitter dopamine by catechol-O-methyltransferase renders it inactive. With only two exceptions, 5-adenosylmethionine (SAM), an activated form of the essential amino acid methionine, is the methyl donor for each of the more than 150 methylation reactions, which regulate a large number of cellular functions. One exception is methylation of homocysteine (HCY) to methionine by the cobalamin (vitamin Bi2)-dependent enzyme methionine synthase, which utilizes 5-methyltetrahydrofolate (methylfolate) as the methyl donor, serving to complete the methionine cycle of methylation, as illustrated in Fig. 1 (lower right). Notably, HCY formation from S-adenosylhomocysteine (SAH) is reversible and, as a result, any decrease in methionine synthase activity will be reflected as an increase in both HCY and SAH. This is significant because SAH interferes with SAM-dependent methylation reactions, and a decrease in methionine synthase activity will decrease all of these reactions. Clearly methionine synthase exerts a powerful influence over cell function via its control over methylation. [Pg.187]

Methyl trap The sequestering of tetrahydrofolate as N -methyl THF because of decreased conversion of homocysteine to methionine as a result of a deficiency of methionine synthase or its cofactor, cobalamin (vitamin B ). [Pg.37]

Metabolism and Mobilization. On entry of vitamin B 2 into the cell, considerable metaboHsm of the vitamin takes place. Co(III)cobalamin is reduced to Co(I)cobalamin, which is either methylated to form methylcobalamin or converted to adenosylcobalamin (coenzyme B>22)- The methylation requires methyl tetrahydrofolate. [Pg.113]

Vitamin B12 (Fig. 1) is defined as a group of cobalt-containing conoids known as cobalamins. The common features of the vitamers are a corrin ting (four reduced pyrrole rings) with cobalt as the central atom, a nucleotide-like compound and a variable ligand. Vitamin B12 is exceptional in as far as it is the only vitamin containing a metal-ion. The vitamers present in biological systems are hydroxo-, aquo-, methyl-, and 5 -deoxyadenosylcobalamin. [Pg.1291]

Figure 15.8 (a) Structure and (b) alternative conformations of cobalamine found in B12-dependent enzymes. The functional group R is deoxyadenosine in AdoCbl, methyl in MeCbl and -CN in vitamin B12. (From Bannerjee and Ragsdale, 2003. Reprinted with permission from Annual Reviews.)... [Pg.264]

Vitamin Bjj (8.50, cobalamin) is an extremely complex molecule consisting of a corrin ring system similar to heme. The central metal atom is cobalt, coordinated with a ribofuranosyl-dimethylbenzimidazole. Vitamin Bjj occurs in liver, but is also produced by many bacteria and is therefore obtained commercially by fermentation. The vitamin is a catalyst for the rearrangement of methylmalonyl-CoA to the succinyl derivative in the degradation of some amino acids and the oxidation of fatty acids with an odd number of carbon atoms. It is also necessary for the methylation of homocysteine to methionine. [Pg.507]

Vitamin B12 consists of a porphyrin-like ring structure, with an atom of Co chelated at its centre, linked to a nucleotide base, ribose and phosphoric acid (6.34). A number of different groups can be attached to the free ligand site on the cobalt. Cyanocobalamin has -CN at this position and is the commercial and therapeutic form of the vitamin, although the principal dietary forms of B12 are 5 -deoxyadenosylcobalamin (with 5 -deoxyadeno-sine at the R position), methylcobalamin (-CH3) and hydroxocobalamin (-OH). Vitamin B12 acts as a co-factor for methionine synthetase and methylmalonyl CoA mutase. The former enzyme catalyses the transfer of the methyl group of 5-methyl-H4 folate to cobalamin and thence to homocysteine, forming methionine. Methylmalonyl CoA mutase catalyses the conversion of methylmalonyl CoA to succinyl CoA in the mitochondrion. [Pg.206]

The effects of cobalamin deficiency are most pronounced in rapidy dividing cells, such as the erythropoietic tissue of bone marrow and the mucosal cells of the intestine. Such tissues need both Die N5-N10-methylene and N10-formyl forms of tetrahydrofolate for Ihe synthesis of nucleotides required for DNA replication (see pp. 291, 301). However, in vitamin B12 deficiency, the N5-methyl form of tetrahydrofolate is not efficiently used. Because the methylated fonn cannot be converted directly to other forms of tetrahydrofolate, tie Ns-methyl form accumulates, whereas the levels of the other forms decrease. Thus, cobalamin deficiency is hypothesized to lead to a deficiency of the tetrahydrofolate forms needed in purine and thymine synthesis, resulting in the symptoms of megaloblastic anemia. [Pg.374]

Vitamin B12s reacts rapidly with alkyl iodides (e.g., methyl iodide or a 5 -chloro derivative of adenosine) via nucleophilic displacement to form the alkyl cobalt forms of vitamin B12 (Eq. 16-31). These reactions provide a convenient way of preparing isotopically labeled alkyl cobalamins, including those selectively... [Pg.870]

Figure 1 Schematic representation of the molecular structure, numbering of atoms, and designations of pyrrole rings of cobalamins. R = Me is methyl B12 R = Ado is adenosyl-cobalamin (coenzyme B12) X = CN is cyanocobalamin (vitamin B12). Five-membered rings are labeled A-D, and the amide side-chains are labeled a-g. Figure 1 Schematic representation of the molecular structure, numbering of atoms, and designations of pyrrole rings of cobalamins. R = Me is methyl B12 R = Ado is adenosyl-cobalamin (coenzyme B12) X = CN is cyanocobalamin (vitamin B12). Five-membered rings are labeled A-D, and the amide side-chains are labeled a-g.
As a model study of methyl cobalamine (methyl transfer) in living bodies, a methyl radical, generated by the reduction of the /s(dimethylglyoximato)(pyridine)Co3+ complex to its Co1+ complex, reacts on the sulfur atom of thiolester via SH2 to generate an acyl radical and methyl sulfide. The formed methyl radical can be trapped by TEMPO or activated olefins [8-13]. As a radical character of real vitamin B12, the addition of zinc to a mixture of alkyl bromide (5) and dimethyl fumarate in the presence of real vitamin B12 at room temperature provides a C-C bonded product (6), through the initial reduction of Co3+ to Co1+ by zinc, reaction of Co1+ with alkyl bromide to form R-Co bond, its homolytic bond cleavage to form an alkyl radical, and finally the addition of the alkyl radical to diethyl fumarate, as shown in eq. 11.4 [14]. [Pg.233]

Although numerous enzymatic reactions requiring vitamin B12 have been described, and 10 reactions for adenosylcobalamin alone have been identified, only three pathways in man have so far been recognized, one of which has only recently been identified (PI). Two of these require the vitamin in the adenosyl form and the other in the methyl form. These cobalamin coenzymes are formed by a complex reaction sequence which results in the formation of a covalent carbon-cobalt bond between the cobalt nucleus of the vitamin and the methyl or 5 -deoxy-5 -adenosyl ligand, with resulting coenzyme specificity. Adenosylcobalamin is required in the conversion of methylmalonate to succinate (Fig. 2), while methylcobalamin is required by a B12-dependent methionine synthetase that enables the methyl group to be transferred from 5-methyltetrahydrofolate to homocysteine to form methionine (Fig. 3). [Pg.166]

The ligand attached to the cobalt atom determines the activity of vitamin B12 in human enzymatic reactions. The two active coenzyme forms are methyl-cobalamin and 5 -adenosylcobalamin, the primary form of vitamin B12 in tissues. Cyanocobalamin, the therapeutic form of vitamin B12 contained in vitamin supplements, is produced by the cleavage of the unstable fink... [Pg.305]

The mammalian synthesis of methionine is more complex and requires cobalamin, a coenzyme form of vitamin B12. Note that because methionine is an essential amino acid, it must be supplied in the diet methionine that is used for methylation (Fig. 15-20) is degraded to homocysteine, and this is remethylated to give methionine. These reactions merely recycle methionine and do not constitute a means of net synthesis. [Pg.449]

One aspect of vitamin B12 deficiency is that it results in the accumulation of W5-methyl-THF. N5-Methyl-THF is synthesized in mammals by an irreversible reaction (as shown above) if it cannot be utilized because of a deficiency of vitamin B12, then it accumulates. This causes a depletion of the other forms of THF, resulting in a deficiency of THF. Megaloblastic anemia (pernicious anemia) is associated with a deficiency of cobalamin... [Pg.450]


See other pages where Cobalamin vitamin methyl is mentioned: [Pg.1701]    [Pg.637]    [Pg.144]    [Pg.25]    [Pg.637]    [Pg.334]    [Pg.446]    [Pg.465]    [Pg.6782]    [Pg.884]    [Pg.1360]    [Pg.1364]    [Pg.350]    [Pg.92]    [Pg.337]    [Pg.489]    [Pg.812]    [Pg.263]    [Pg.368]    [Pg.674]    [Pg.262]    [Pg.373]    [Pg.373]    [Pg.33]    [Pg.346]    [Pg.448]    [Pg.169]    [Pg.314]   
See also in sourсe #XX -- [ Pg.312 , Pg.313 , Pg.314 , Pg.315 , Pg.321 , Pg.322 ]




SEARCH



Cobalamin (vitamin

Cobalamine

Cobalamines

Cobalamins

Methyl cobalamine

© 2024 chempedia.info