Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalamin, methyl reactions

It is the role of jV5-methyl THF which is key to understanding the involvement of cobalamin in megaloblastic anaemia. The metabolic requirement for N-methyl THF is to maintain a supply of the amino acid methionine, the precursor of S-adenosyl methionine (SAM), which is required for a number of methylation reactions. The transfer of the methyl group from jV5-methyl THF to homocysteine is cobalamin-dependent, so in B12 deficiency states, the production of SAM is reduced. Furthermore, the reaction which brings about the formation of Ns-methyl THF from N5,N10-methylene THF is irreversible and controlled by feedback inhibition by SAM. Thus, if B12 is unavailable, SAM concentration falls and Ah -methyl THF accumulates and THF cannot be re-formed. The accumulation of AT-methyl THF is sometimes referred to as the methyl trap because a functional deficiency of folate is created. [Pg.141]

The reduction properties of the cobalamins also differ from the normal Co111 complexes in that they can be readily reduced to the Co1 state, e.g. as in the methylation reaction (9). The electrochemical properties of the cobalamins have recently been reviewed.151 Several reviews are also available concerning their biological activity, the mechanisms of reactions, and synthetic analogues.150,152-155... [Pg.984]

As a model study of methyl cobalamine (methyl transfer) in living bodies, a methyl radical, generated by the reduction of the /s(dimethylglyoximato)(pyridine)Co3+ complex to its Co1+ complex, reacts on the sulfur atom of thiolester via SH2 to generate an acyl radical and methyl sulfide. The formed methyl radical can be trapped by TEMPO or activated olefins [8-13]. As a radical character of real vitamin B12, the addition of zinc to a mixture of alkyl bromide (5) and dimethyl fumarate in the presence of real vitamin B12 at room temperature provides a C-C bonded product (6), through the initial reduction of Co3+ to Co1+ by zinc, reaction of Co1+ with alkyl bromide to form R-Co bond, its homolytic bond cleavage to form an alkyl radical, and finally the addition of the alkyl radical to diethyl fumarate, as shown in eq. 11.4 [14]. [Pg.233]

Figure 21-3. The methionine synthase reaction. Methionine synthase catalyzes the remethylation of homocysteine to methionine. In the first half reaction (1), a methyl group is transferred from 5-methyl tetrahydrofolate (5-MTHF) to the reduced form of cobalamin [Cob(I)], generating methyl-cobalamin [Methyl-Cob(III)] and tetrahydrofolate (THF). During the second half reaction (2), the methyl group is transferred from methylcobalamin to homocysteine, generating methionine. During the catalytic reaction, Cob(I) occasionally becomes oxidized, producing an inactive form of cobalamin, cob(II)alamin [Cob(II)]. The enzyme methionine synthase reductase (MTRR) then reactivates Cob(II) through reductive methylation, producing methyl-Cob(III). SAM, 5-adenosylmethionine SAH, 5-adeno-sylhomocysteine. Figure 21-3. The methionine synthase reaction. Methionine synthase catalyzes the remethylation of homocysteine to methionine. In the first half reaction (1), a methyl group is transferred from 5-methyl tetrahydrofolate (5-MTHF) to the reduced form of cobalamin [Cob(I)], generating methyl-cobalamin [Methyl-Cob(III)] and tetrahydrofolate (THF). During the second half reaction (2), the methyl group is transferred from methylcobalamin to homocysteine, generating methionine. During the catalytic reaction, Cob(I) occasionally becomes oxidized, producing an inactive form of cobalamin, cob(II)alamin [Cob(II)]. The enzyme methionine synthase reductase (MTRR) then reactivates Cob(II) through reductive methylation, producing methyl-Cob(III). SAM, 5-adenosylmethionine SAH, 5-adeno-sylhomocysteine.
Figure 9 Symbolic illustration depicting the major structural changes occurring in heterolytic Co-demethylation and Co-methylation reactions of the cobalamins (4) and (6)... Figure 9 Symbolic illustration depicting the major structural changes occurring in heterolytic Co-demethylation and Co-methylation reactions of the cobalamins (4) and (6)...
Methylmalonyl-CoA mutase utilizes 5 -deoxyadenosylcobalamin (Chapter 38) to catalyze intramolecular isomerization by the migration of the -COSCoA group. The only other cobalamin-dependent reaction in the mammalian system is methylation of homocysteine to methionine (Chapters 17, 27, and 38). [Pg.373]

Methylation is the addition of a carbon atom to a molecule, usually causing a change in the function of the methylated molecule. For example, methylation of the neurotransmitter dopamine by catechol-O-methyltransferase renders it inactive. With only two exceptions, 5-adenosylmethionine (SAM), an activated form of the essential amino acid methionine, is the methyl donor for each of the more than 150 methylation reactions, which regulate a large number of cellular functions. One exception is methylation of homocysteine (HCY) to methionine by the cobalamin (vitamin Bi2)-dependent enzyme methionine synthase, which utilizes 5-methyltetrahydrofolate (methylfolate) as the methyl donor, serving to complete the methionine cycle of methylation, as illustrated in Fig. 1 (lower right). Notably, HCY formation from S-adenosylhomocysteine (SAH) is reversible and, as a result, any decrease in methionine synthase activity will be reflected as an increase in both HCY and SAH. This is significant because SAH interferes with SAM-dependent methylation reactions, and a decrease in methionine synthase activity will decrease all of these reactions. Clearly methionine synthase exerts a powerful influence over cell function via its control over methylation. [Pg.187]

Attempts have been made to mimic the above reactions under nonenzymatic conditions. Methylcobalamin methylates homocysteine, but the reaction is a free radical process . Also, MeH4THF does not methylate cobaloxime(I) or Bj2s. AI-Methylamines are also unreactive toward Co(I) species. Tetraalkylammonium compounds alkylate Co(I) nucleophiles to form alkylcobalt compounds" it is possible that MeH4THF is protonated by the enzyme and Ais methylates the cobalamin. Methylation in low yield of cobalamin(I) by MeH4THF at low pH has been disputed. ... [Pg.602]

In the absence of oxygen the photodecomposition of adenosylcobalamin leads to the formation of Co +-cobalamin (22) and a 5 -deoxyadenosyl that cy-clizes to 8,5-cyclic-adenosine (23). In the presence of oxygen, aquocobalamin and adenosine-5 -carboxaldehyde are formed (24). Photolysis of methylcobala-min occurs very rapidly in aqueous solution with formation of formaldehyde and aquocobalamin as the major products. In the absence of oxygen the reaction is rather slow and gives rise to the formation of Co -cobalamin and methane (25,26). Remarkably, photolysis of methylcobalamin in the presence of homocysteine yields methionine, a methylation reaction that under aerobic, intracellular conditions occurs only in an enzyme-catalyzed reaction with reductive activity... [Pg.520]

For the reaction with methyl cobalamin (methyl vitamin B12), see From Lead(ll) and Lead(IV) Compounds and CH3I or Other Methylating Agents , p. 71. [Pg.58]

Mechanistic aspects of the action of folate-requiring enzymes involve one-carbon unit transfer at the oxidation level of formaldehyde, formate and methyl (78ACR314, 8OMI2I6OO) and are exemplified in pyrimidine and purine biosynthesis. A more complex mechanism has to be suggested for the methyl transfer from 5-methyl-THF (322) to homocysteine, since this transmethylation reaction is cobalamine-dependent to form methionine in E. coli. [Pg.325]

Schrauzer and co-workers have studied the kinetics of alkylation of Co(I) complexes by organic halides (RX) and have examined the effect of changing R, X, the equatorial, and axial ligands 148, 147). Some of their rate constants are given in Table II. They show that the rates vary with X in the order Cl < Br < I and with R in the order methyl > other primary alkyls > secondary alkyls. Moreover, the rate can be enhanced by substituents such as Ph, CN, and OMe. tert-Butyl chloride will also react slowly with [Co (DMG)2py] to give isobutylene and the Co(II) complex, presumably via the intermediate formation of the unstable (ert-butyl complex. In the case of Co(I) cobalamin, the Co(II) complex is formed in the reaction with isopropyl iodide as well as tert-butyl chloride. Solvent has only a slight effect on the rate, e.g., the rate of reaction of Co(I) cobalamin... [Pg.353]

The primary step in the photolysis of methylcobalamin is homolytic fission to give the Co(II) cobalamin and methyl radicals. Recombination can occur, i.e., the reaction is reversed, unless the radicals and/or Co(II) are removed by further reactions ... [Pg.404]

Enzymatic methylation of homocysteine (HSCHjCHjCHNHjCOOH) by methylcobalamin to give methionine (CH3SCH2CH2CHNH2COOH) was discovered in 1962 by Woods and co-workers, who also noticed the occurrence of a much slower, nonenzymatic reaction giving the same products. Methylcobinamide showed the same activity as the cobalamin in both the enzymatic and nonenzymatic reactions (72, 7/). It was subsequently discovered that HS, MeS , PhS , and w-BuS will dealkylate a variety of methyl complexes [DMG, DMG-BF2, DPG, G, salen, (DO)(DOH)pn, cobalamin] and even ethyl-Co(DMG)2 complexes to give the thioethers, and it was suggested that the reaction involved transfer of the carbonium ion to the attacking thiolate 161, 164), e.g.,... [Pg.426]

Catalytic hydrogenation with platinum liberates the hydrocarbon from methylcobalamin (57) and from alkyl-Co-DMG complexes (161), but not from pentacyanides with primary alkyl, vinyl, or benzyl ligands, though the cr-allyl complex yields propylene (109). Sodium sand gives mixtures of hydrocarbons with the alkyl-Co-salen complexes (64). Dithioerythritol will liberate methane from a variety of methyl complexes [cobalamin, DMG, DMG-BF2, G, DPG, CHD, salen, and (DO)(DOH)pn] (156), as will 1,4-butanedithiol from the DMG complex (157), and certain unspecified thiols will reduce DMG complexes with substituted alkyl ligands (e.g., C0-CH2COOH ->CH3C00H) (163, 164). Reaction with thiols can also lead to the formation of thioethers (see Section C,3). [Pg.432]

Only a few other cobalt complexes of the type covered in this review (and therefore excluding, for example, the cobalt carbonyls) have been reported to act as catalysts for homogeneous hydrogenation. The complex Co(DMG)2 will catalyze the hydrogenation of benzil (PhCOCOPh) to benzoin (PhCHOHCOPh). When this reaction is carried out in the presence of quinine, the product shows optical activity. The degree of optical purity varies with the nature of the solvent and reaches a maximum of 61.5% in benzene. It was concluded that asymmetric synthesis occurred via the formation of an organocobalt complex in which quinine was coordinated in the trans position (133). Both Co(DMG)2 and cobalamin-cobalt(II) in methanol will catalyze the following reductive methylations ... [Pg.437]

Co within all compounds of the so-called cobalamin (or B12) family. The biological functions of cobalamin cofactors are defined by their axial substituents either a methyl or an adenosyl group. Both cofactors participate in biosynthesis the former in methyl transfer reactions while the latter is a free radical initiator, abstracting H atoms from substrates. Decades after their initial characterization, the fascination with the biological chemistry of cobalamins remains.1109... [Pg.100]

In mammals and in the majority of bacteria, cobalamin regulates DNA synthesis indirectly through its effect on a step in folate metabolism, catalyzing the synthesis of methionine from homocysteine and 5-methyltetrahydrofolate via two methyl transfer reactions. This cytoplasmic reaction is catalyzed by methionine synthase (5-methyltetrahydrofolate-homocysteine methyl-transferase), which requires methyl cobalamin (MeCbl) (253), one of the two known coenzyme forms of the complex, as its cofactor. 5 -Deoxyadenosyl cobalamin (AdoCbl) (254), the other coenzyme form of cobalamin, occurs within mitochondria. This compound is a cofactor for the enzyme methylmalonyl-CoA mutase, which is responsible for the conversion of T-methylmalonyl CoA to succinyl CoA. This reaction is involved in the metabolism of odd chain fatty acids via propionic acid, as well as amino acids isoleucine, methionine, threonine, and valine. [Pg.100]

This may be of significance in connetion with the biosynthesis of acetate from carbon dioxide, because the next step, the fixation of carbon monoxide, was demonstrated by B. Krautler. He irradiated methyl cobalamin under Co at 30 atm and obtained the acyl cobalamin as the product. Interestingly, a radical mechanism was iproposed, involving the reaction of methyl radicals with CO to give acyl radicals, which then recombine with the cobalt complex /55/. [Pg.150]

Use of CD30D or methyl tetrahydrofuran solvents to encourage electron capture, resulted in a complex set of reactions for methyl cobalamine. Initial addition occurred into the w corrin orbital, but on annealing a cobalt centred radical was obtained, the e.s.r. spectrum of which was characteristic of an electron in a d z.y orbital (involving the corrin ring) rather than the expected d2z orbital. However, the final product was the normal Co species formed by loss of methyl. Formally, this requires loss of CH3 , but this step seems highly unlikely. Some form of assisted loss, such as protonation, seems probable. [Pg.190]

Ashby and Craig72 reported that MeSn3+ and small amounts of Me2Sn2+ are also produced when a baker s yeast (Saccharomyces cerevisiae) is incubated with tin(II) compounds including tin(II) oxalate, tin(II) sulfide and various tin amino acid complexes. Tin(II) chloride and tin(II) amino acid complexes were methylated by methyl-cobalamin, under conditions of chloride ion concentrations and pH relevant to the natural environment73. The main identified product of all reactions was monomethyltin. [Pg.890]

A relatively large number of agents have been utilized to treat this intractable disorder folinic acid (5-formyl-tetrahydrofolic acid), folic acid, methyltetrahydrofolic acid, betaine, methionine, pyridoxine, cobalamin and carnitine. Betaine, which provides methyl groups to the beta i ne ho mocystei ne methyltransferase reaction, is a safe treatment that lowers blood homocysteine and increases methionine. [Pg.677]

Methionine synthase deficiency (cobalamin-E disease) produces homocystinuria without methylmalonic aciduria. This enzyme mediates the transfer of a methyl group from methyltetrahydrofolate to homocysteine to yield methionine (Fig. 40-4 reaction 4). A cobalamin group bound to the enzyme is converted to methylcobalamin prior to formation of methionine. [Pg.677]

The vitamin cobalamin (vitamin Bjj) is reduced and activated in the body to two forms, adeno-sylcobalamin, used by methylmalonyl CoA mutase, and methylcobalamin, formed from methyl-THF in the N-methyl THF-homocysteine methyltransferase reaction. These are the only two enzymes that use vitamin (other than the enzymes that reduce and add an adenosyl group to it). [Pg.250]

Cobalamin deficiency can create a secondary deficiency of active THF by preventing its release from the storage pool through the AT-methyl THF-homocysteine methyltransferase reaction, and thus also result in megaloblastic anemia. Progressive peripheral neuropathy also results from cobalamin deficiency. TTeating a cobalamin deficiency with folate corrects the megaloblastic anemia but does not halt the neuropathy. [Pg.250]

This cobalamin-dependent enzyme catalyzes the reaction of methyltetrahydromethanopterin with coenzyme M to produce methyl-coenzyme M and tetrahydrometha-nopterin. [Pg.462]


See other pages where Cobalamin, methyl reactions is mentioned: [Pg.106]    [Pg.346]    [Pg.113]    [Pg.1821]    [Pg.941]    [Pg.7186]    [Pg.886]    [Pg.442]    [Pg.358]    [Pg.407]    [Pg.421]    [Pg.424]    [Pg.425]    [Pg.357]    [Pg.580]    [Pg.102]    [Pg.56]    [Pg.59]    [Pg.337]    [Pg.812]    [Pg.675]   
See also in sourсe #XX -- [ Pg.639 ]

See also in sourсe #XX -- [ Pg.639 ]




SEARCH



Cobalamine

Cobalamines

Cobalamins

Methyl cobalamine

© 2024 chempedia.info