Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Citric acid dehydrogenase

Thunberg T (1929) The presence of citric acid-dehydrogenase in cucumber and its utilization for a highly sensitive biological color reaction for citric acid. Biochem Z 206 109-119 Thunberg T (1953) Occurrence and significance of citric acid in the animal organism. Physiol Rev 33 1-12... [Pg.261]

L-glutamate dehydrogenase L-glutamate test for citric acid cycle... [Pg.108]

The conversion occurs through a multistep sequence of reactions catalyzed by a complex of enzymes and cofactors called the pyruvate dehydrogenase complex. The process occurs in three stages, each catalyzed by one of the enzymes in the complex, as outlined in Figure 29.11 on page 1152. Acetyl CoA, the ultimate product, then acts as fuel for the final stage of catabolism, the citric acid cycle. All the steps have laboratory analogies. [Pg.1151]

The final step is the oxidation of (S)-malate by NAD+ to give oxaloacetate, a reaction catalyzed by malate dehydrogenase. The citric acid cycle has now returned to its starting point, ready to revolve again. The overall result of the cycle is... [Pg.1159]

The diagram looks very promising in terms of citric acid formation in that a-oxoglutarate dehydrogenase is inactive, isodtrate dehydrogenase has veiy low activity and aconitase equilibrates 90% towards dtric add. [Pg.127]

Ethanol is oxidized by alcohol dehydrogenase (in the presence of nicotinamide adenine dinucleotide [NAD]) or the microsomal ethanol oxidizing system (MEOS) (in the presence of reduced nicotinamide adenine dinucleotide phosphate [NADPH]). Acetaldehyde, the first product in ethanol oxidation, is metabolized to acetic acid by aldehyde dehydrogenase in the presence of NAD. Acetic acid is broken down through the citric acid cycle to carbon dioxide (CO2) and water (H2O). Impairment of the metabolism of acetaldehyde to acetic acid is the major mechanism of action of disulfiram for the treatment of alcoholism. [Pg.6]

Generally, NAD-linked dehydrogenases catalyze ox-idoreduction reactions in the oxidative pathways of metabolism, particularly in glycolysis, in the citric acid cycle, and in the respiratory chain of mitochondria. NADP-linked dehydrogenases are found characteristically in reductive syntheses, as in the extramitochon-drial pathway of fatty acid synthesis and steroid synthesis—and also in the pentose phosphate pathway. [Pg.87]

As a result of oxidations catalyzed by the dehydrogenases of the citric acid cycle, three molecules of NADH and one of FADHj are produced for each molecule of acetyl-CoA catabohzed in one mrn of the cycle. These reducing equivalents are transferred to the respiratory chain (Figure 16-2), where reoxidation of each NADH results in formation of 3 ATP and reoxidation of FADHj in formation of 2 ATP. In addition, 1 ATP (or GTP) is formed by substrate-level phosphorylation catalyzed by succinate thiokinase. [Pg.133]

Four of the B vitamins are essential in the citric acid cycle and therefore in energy-yielding metabolism (1) riboflavin, in the form of flavin adenine dinucleotide (FAD), a cofactor in the a-ketoglutarate dehydrogenase complex and in succinate dehydrogenase (2) niacin, in the form of nicotinamide adenine dinucleotide (NAD),... [Pg.133]

The criteria for gene displacement in this study were strict. The reactions catalyzed were required to have the same EC (Enzyme Commission) number, which implies that the same cofactors had to be involved. In the example of reactions involved in the citric acid cycle given previously, when only the carbohydrate substrate and product of the reaction were the same, we could identify gene displacements at 6 of the 11 steps included in the analysis. Only two of those (malate dehydrogenase and fumarase) met the criteria in Galperin et al. (1998). [Pg.375]

Many enzymes in the mitochondria, including those of the citric acid cycle and pyruvate dehydrogenase, produce NADH, aU of which can be oxidized in the electron transport chain and in the process, capture energy for ATP synthesis by oxidative phosphorylation. If NADH is produced in the cytoplasm, either the malate shuttle or the a-glycerol phosphate shuttle can transfer the electrons into the mitochondria for delivery to the ETC. Once NADH has been oxidized, the NAD can again be used by enzymes that require it. [Pg.181]

FADH is produced by succinate dehydrogenase in the citric acid cycle and by the a-glycerol phosphate shuttle. Both enzymes are located in the inner membrane and can reoxidize FADHj directly by transferring electrons into the ETC. Once FADH2 has been oxidized, the FAD can be made available once again for use by the enzyme. [Pg.181]

In the presence of adequate O, the rate of oxidative phosphorylation is dependent on the availability of ADR. The concentrations of ADR and ATR are reciprocally related an accumulation of ADR is accompanied by a decrease in ATR and the amount of energy available to the celL Therefore, ADR accumulation signals the need for ATR synthesis. ADR aUosterically activates isocitrate dehydrogenase, thereby increasing the rate of the citric acid cycle and the production of NADH and FADH. The elevated levels of these reduced coenzymes, in turn, increase the rate of electron transport and ATR synthesis. [Pg.186]

Isocitrate dehydrogenase inhibited by NADH (causing the citric acid cyde to stop when the ETC stops in the anaerobic cell). [Pg.186]

Thiamine pyrophosphate is a coenzyme for several enzymes involved in carbohydrate metabolism. These enzymes either catalyze the decarboxylation of oi-keto acids or the rearrangement of the carbon skeletons of certain sugars. A particularly important example is provided by the conversion of pyruvic acid, an oi-keto acid, to acetic acid. The pyruvate dehydrogenase complex catalyzes this reaction. This is the key reaction that links the degradation of sugars to the citric acid cycle and fatty acid synthesis (chapters 16 and 18) ... [Pg.200]

To begin with, let us return to the aerobic catabolism of simple sugars such as glucose to yield two molecules of pyruvate -I- two molecules of ATP - - two molecules of NADH. We noted just above that coupling the oxidation of the two molecules of NADH to the electron transport chain yields an additional six molecules of ATP, three for each molecule of NADH, for a total of eight. Now let s ask what happens when we further metabolize the two molecules of pyruvate via the pyruvate dehydrogenase complex and the citric acid cycle. [Pg.234]


See other pages where Citric acid dehydrogenase is mentioned: [Pg.1118]    [Pg.1118]    [Pg.88]    [Pg.108]    [Pg.108]    [Pg.261]    [Pg.467]    [Pg.656]    [Pg.357]    [Pg.50]    [Pg.94]    [Pg.132]    [Pg.135]    [Pg.136]    [Pg.136]    [Pg.139]    [Pg.140]    [Pg.157]    [Pg.177]    [Pg.212]    [Pg.231]    [Pg.247]    [Pg.267]    [Pg.489]    [Pg.226]    [Pg.363]    [Pg.363]    [Pg.371]    [Pg.373]    [Pg.174]    [Pg.175]    [Pg.179]   
See also in sourсe #XX -- [ Pg.34 ]




SEARCH



Citric dehydrogenase

© 2024 chempedia.info