Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloroform compounds

The alcoholic ethereal filtrate is then dried over calcined potassium carbonate and the solution evaporated, whereby 0.9 to 1 part of a mixture of d-lysergic acid-d-l-hydroxybutyl-amide-2 and of d-isolysergic acid-d-l-hvdroxvbutylamide-2 is obtained. In order to separate the isomers, the residue is dissolved in 15 parts of hot chloroform and filtered from the small quantity of inorganic salt, whereby on cooling down, the difficultly soluble chloroform compound of d-lysergic acid-d-l hvdroxvbutylamide-2 crystallizes out. Yield 0.4 part. This compound can be recrystallized from hot benzene, whereby crystals melting... [Pg.994]

Methanol (100 mL), which hydrolyzes unwanted chloroformate compounds in addition to unreacted phosgene, was then added dropwise over 30 min (very slowly at the beginning by pipette). Furthermore, vigorous stirring during methanol addition is required to ensure HCl does not accumulate in the flask, hence preventing the hydrolysis of the ketal to the undesired alcohol. [Pg.219]

Alder reaction.319 With EP and aluminum chloride320 in chloroform, compound 161 gave mainly 164,319 due to the electrophilic attack on the enaminic-type electron-rich 3-position of this particular pyridine. [Pg.378]

In order to separate the isomers, the residue is dissolved in 15 parts of hot chloroform and filtered from the small quantity of inorganic salt, whereby on cooling down, the difficultly soluble chloroform compound of d-lysergic acid-d,Z-hydroxybutylamide-2 crystallizes out. Yield 0.4 part. [Pg.77]

CCls CHO. A colourless oily liquid with a pungent odour b.p. 98°C. Manut actured by the action of chlorine on ethanol it is also made by the chlorination of ethanal. When allowed to stand, it changes slowly to a white solid. Addition compounds are formed with water see chloral hydrate), ammonia, sodium hydrogen sulphite, alcohols, and some amines and amides. Oxidized by nitric acid to tri-chloroethanoic acid. Decomposed by alkalis to chloroform and a methanoate a convenient method of obtaining pure CHCI3. It is used for the manufacture of DDT. It is also used as a hypnotic. [Pg.91]

The bromine test is applied first. The organic compound, if a liquid, is treated with 2-3 drops of liquid bromine or (preferably) a solution of bromine in carbon tetrachloride if the organic compound is a solid, it should first be dissolved in cold carbon tetrachloride or chloroform. The rapid absorption of the bromine (and consequent disappearance of the red colour) is a strong indication that the compound is unsaturated, and is therefore undergoing direct addition of the bromine. [Pg.85]

In addition to chloroform, many other compounds containing the trichloro-methyl group, CI3C-, show marked physiological action. Thus trichloro-acetaldehyde or chloral hydrate, Cl3C CH(OH) (p. 342), and trichloro-tertiary-butanol or chloretone, CUC CfCHaliOH, are both hypnotics. Similarly, tribromo-ethanol or avertin, BraC-CHjOH, has strong anaesthetic properties. [Pg.91]

The anhydrous compound is not appreciably hygroscopic, is readily soluble in acetone and amyl alcohol, and insoluble in benzene, toluene, xylene and chloroform it is also readily soluble in absolute methyl or ethyl alcohol, but a trace of water causes immediate hydrolysis with the formation of an opalescent precipitate. [Pg.198]

Suspend 0 25 g. of 2 4-dinitrophenylhydrazine in 5 ml. of methanol and add 0-4 0-5 ml. of concentrated sulphuric acid cautiously. FUter the warm solution and add a solution of 0 1-0-2 g. of the carbonyl compound in a small volume of methanol or of ether. If no sohd separate within 10 minutes, dUute the solution carefuUy with 2N sulphuric acid. CoUect the solid by suction filtration and wash it with a little methanol. RecrystaUise the derivative from alcohol, dUute alcohol, alcohol with ethyl acetate or chloroform or acetone, acetic acid, dioxan, nitromethane, nitrobenzene or xylene. [Pg.344]

Picrates, Many aromatic hydrocarbons (and other classes of organic compounds) form molecular compounds with picric acid, for example, naphthalene picrate CioHg.CgH2(N02)30H. Some picrates, e.g., anthracene picrate, are so unstable as to be decomposed by many, particularly hydroxylic, solvents they therefore cannot be easily recrystaUised. Their preparation may be accomplished in such non-hydroxylic solvents as chloroform, benzene or ether. The picrates of hydrocarbons can be readily separated into their constituents by warming with dilute ammonia solution and filtering (if the hydrocarbon is a solid) through a moist filter paper. The filtrate contains the picric acid as the ammonium salt, and the hydrocarbon is left on the filter paper. [Pg.518]

Secondary nitro compound dark blue or blue green colour due to nitro-iiitroso derivatives. The coloured compound is soluble in chloroform. [Pg.531]

It is convenient to describe here certain polyvalent iodine compounds, formed by such substances as iodobenzene and p-iodotoluene. lodobenzeue in chloroform solution reacts readily with chlorine to form iodobenzene dlchlorlde (phenyl iododichloride) (I) ... [Pg.534]

Procedure 1. Dissolve 1 g. of the compound in 5 ml. of chloroform in a test-tube and cool in ice. Add 5 ml. of chlorosulphonic acid CA UTION in handhng) dropwise and with shaking. When the initial evolution of hydrogen chloride subsides, remove the reaction mixture from the ice and, after 20 minutes, pour it into a 50 ml. beaker filled with crushed ice. Separate the chloroform layer, wash it well with water, and evaporate the solvent. Recrystallise the residual aryl sulphonyl chloride from light petroleum (b.p. 40-60°), chloroform or benzene this is not essential for conversion into the sulphonamide. [Pg.543]

Dissolve 1 0 g. of the compound in 5 ml. of dry chloroform in a dry test-tuhe, cool to 0°, and add dropwise 5g. (2-8 ml.) of redistilled chloro-sulphonic acid. When the evolution of hydrogen chloride subsides, allow the reaction mixture to stand at room temperature for 20 minutes. Pour the contents of the test-tube cautiously on to 25 g. of crushed ice contained in a small beaker. Separate the chloroform layer and wash it with a httle cold water. Add the chloroform layer, with stirring, to 10 ml. of concentrated ammonia solution. After 10 minutes, evaporate the chloroform on a water bath, cool the residue and treat it with 5 ml. of 10 per cent, sodium hydroxide solution the sulphonamide dissolves as the sodium derivative, RO.CgH4.SO,NHNa. Filter the solution to remove any insoluble matter (sulphone, etc.), acidify the filtrate with dilute hydrochloric acid, and cool in ice water. Collect the sulphonamide and recrystallise it from dilute alcohol. [Pg.672]

The number of ethylenic linkages In a given compound can be established with accuracy by quantitative titration with perbenzoic acid. A solution of the substance ajid excess of perbenzoic acid in chloroform is allowed to stand for several hours at a low temperature and the amount of unreacted perbenzoic acid in solution is determined a blank experiment is run simultaneously. [Pg.809]

Ethylenic compounds when oxidised with perbenzoic acid or perphthalic acid in chloroform solution yield epoxides (or oxiranes). This Is sometimes known as the Prileschajew epoxidation reaction. Thus pyrene affords styrene oxide (or 2-plienyloxirane) ... [Pg.893]

Polybromo compounds (bromoform, s-tetrabromoethane) react similarly at 50°, but simple polychloro compounds (chloroform, carbon tetrachloride and trichloroacetic acid) do not. [Pg.1060]

Without carbon, the basis for life would be impossible. While it has been thought that silicon might take the place of carbon in forming a host of similar compounds, it is now not possible to form stable compounds with very long chains of silicon atoms. The atmosphere of Mars contains 96.2% CO2. Some of the most important compounds of carbon are carbon dioxide (CO2), carbon monoxide (CO), carbon disulfide (CS2), chloroform (CHCb), carbon tetrachloride (CCk), methane (CHr), ethylene (C2H4), acetylene (C2H2), benzene (CeHe), acetic acid (CHsCOOH), and their derivatives. [Pg.16]

Most of the chlorine produced is used in the manufacture of chlorinated compounds for sanitation, pulp bleaching, disinfectants, and textile processing. Further use is in the manufacture of chlorates, chloroform, carbon tetrachloride, and in the extraction of bromine. [Pg.41]


See other pages where Chloroform compounds is mentioned: [Pg.941]    [Pg.413]    [Pg.631]    [Pg.310]    [Pg.504]    [Pg.96]    [Pg.324]    [Pg.92]    [Pg.368]    [Pg.611]    [Pg.669]    [Pg.941]    [Pg.413]    [Pg.631]    [Pg.310]    [Pg.504]    [Pg.96]    [Pg.324]    [Pg.92]    [Pg.368]    [Pg.611]    [Pg.669]    [Pg.28]    [Pg.164]    [Pg.181]    [Pg.226]    [Pg.160]    [Pg.617]    [Pg.91]    [Pg.269]    [Pg.321]    [Pg.149]    [Pg.807]    [Pg.810]    [Pg.889]    [Pg.918]    [Pg.946]    [Pg.957]    [Pg.1040]   


SEARCH



© 2024 chempedia.info