Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorine stereochemistry

Substituted 2-haloaziridines are also known to undergo a number of reactions without ring opening. For example, displacement of chlorine in (264) with various nucleophilic reagents has been found to occur with overall inversion of stereochemistry about the aziridine ring (65JA4538). The displacements followed first order kinetics and faster rates were noted for (264 R = Me) than for (264 R = H). The observed inversion was ascribed to either ion pairing and/or stereoselectivity. [Pg.74]

The stereochemistry of chlorination can be explained in similar terms. Chlorine would be expected to be a somewhat poorer bridging group than bromine because it is less polarizable and more resistant to becoming positively charged. Comparison of the data for bromination and chlorination of E- and Z-l-phenylpropene confirms this trend (see Table 6.2). Although anti addition is dominant in bromination, syn addition is slightly preferred... [Pg.362]

The stereochemistry of both chlorination and bromination of several cyclic and acyclic dienes has been determined. The results show that bromination is often stereo-specifically anti for the 1,2-addition process, whereas syn addition is preferred for 1,4-addition. Comparable results for chlorination show much less stereospeciftcity. It appears that chlorination proceeds primarily through ion-pair intermediates, whereas in bromina-hon a stereospecific anfi-l,2-addition may compete with a process involving a carbocation mtermediate. The latter can presumably give syn or anti product. [Pg.369]

Although the nature of the general polar effect suggested by Kamernitzsky and Akhrem " to account for axial attack in unhindered ketones is not clear, several groups have reported electrostatic interactions affect the course of borohydride reductions. Thus the keto acid (5a) is not reduced by boro-hydride but its ester (5b) is reduced rapidly further, the reduction of the ester (6b) takes place much more rapidly than that of the acid (6a). Spectroscopic data eliminate the possibility that in (5a) there is an interaction between the acid and ketone groups (e.g. formation of a lactol). The results have been attributed to a direct repulsion by the carboxylate ion as the borohydride ion approaches. " By contrast, House and co-workers observed no electrostatic effect on the stereochemistry of reduction of the keto acid (7). However, in this compound the acid group may occupy conformations in which it does not shield the ketone. Henbest reported that substituting chlorine... [Pg.71]

Dehydration of prednisolone acetate (175b) yields the corresponding 9,11 olefin. As a variation on the chemistry we have seen previously, this olefin is allowed to react with chlorine in the presence of lithium chloride. If this addition is assumed to proceed by the customary mechanism, the first intermediate should be the 9a,11a-chioronium ion. Axial attack by chloride anion from the 110 position will lead to the observed stereochemistry of the product dichlorisone (240). ... [Pg.203]

Pieces of various routes to moxalactam have been published from which the following may be assembled as one of the plausible pathways. The benzhydrol ester of 6-aminopenici 11 anic acid ( ) is -chlorinated and treated with base whereupon the intermediate sulfenyl chloride fragments to ). Next, displacement with propargyl alcohol in the presence of zinc chloride gives predominantly the stereochemistry represented by dia-stereoisomer The side chain is protected as the phenyl-... [Pg.219]

HC1, HBr, and HI add to alkenes by a two-step electrophilic addition mechanism. Initial reaction of the nucleophilic double bond with H+ gives a carbo-cation intermediate, which then reacts with halide ion. Bromine and chlorine add to alkenes via three-membered-ring bromonium ion or chloronium ion intermediates to give addition products having anti stereochemistry. If water is present during the halogen addition reaction, a halohydrin is formed. [Pg.246]

Bromine and chlorine also add to alkynes to give addition products, and trans stereochemistry again results. [Pg.262]

The Lead-Off Reaction Addition of HBr to Alkenes Students usually attach great-importance to a text s lead-off reaction because it is the first reaction they see and is discussed in such detail. 1 use the addition of HBr to an alkene as the lead-off to illustrate general principles of organic chemistry for several reasons the reaction is relatively straightforward it involves a common but important functional group no prior knowledge of stereochemistry or kinetics in needed to understand it and, most important, it is a polar reaction. As such, 1 believe that electrophilic addition reactions represent a much more useful and realistic introduction to functional-group chemistry than a lead-off such as radical alkane chlorination. [Pg.1335]

Sucralose is the sugar sucrose with three of the hydroxyl groups replaced by chlorine atoms. In the process, the stereochemistry of the glucose half of the molecule is changed, making it more like galactose. [Pg.81]

It has been shown that the stereochemistry of starting dipeptidyl chloromethyl ketones does not influence the cycHzation reaction, but the chlorine... [Pg.271]

Acetylpyridine thiosemicarbazone forms [Co(8)2Cl2], which is isolated from hot ethanol [178], Based on infrared spectra the pyridyl nitrogen is coordinated and bonding is NS with two chlorines bringing the coordination number to six. The complex is a non-electrolyte in DMF, has a magnetic moment of 4.13 B.M., and the electronic spectrum has bands at about 8160 and 17 860 cm consistent with octahedral stereochemistry. [Pg.34]

Another synthesis, shown in Scheme 13.9, that starts with the same aldehyde (perillaldehyde) was completed more recently. The C(8)—C(9) bond was established by an allylic chlorination and addition of the corresponding zinc reagent to isobu-tyraldehyde. In this synthesis, the C(7) stereochemistry was established by a homogeneous hydrogenation of a methylene group, but this reaction also produces both stereoisomers. [Pg.1179]

The stereochemistries of the reactions between 0-aryl 0-methyl phosphonochloridothioates and nucleophiles have been studied in relation to the synthesis of 1,3,2-oxazaphospholidines. No displacement of chlorine takes place on treatment of O-methyl 0-4-nitrophenyl phosphonochloridothioate with 2-methoxyethanol, and in the presence of 1-phenylethylamine, it is only the latter which reacts. In addition, when the same phosphonochloridothioate is treated with sodium ethoxide, it is the 4-nitrophenoxy group, rather than chlorine, which is displaced. Both displacements were shown to occur with inversion of configuration at phosphorus. The use of such an acid chloride as a two-step 1cyclophosphorylating1 agent of 2-aminoalcohols to give 1,3,2-oxazaphospholidines (209), is illustrated. ... [Pg.176]

Thus, to achieve mirror-symmetric or centrosymmetric cyclobutane derivatives, one would start with monomers that are substituted with dichloro groups or amide functions, respectively. Both the chlorines and the amide groups can subsequently be removed readily, without affecting the stereochemistry of the ring. [Pg.171]

Later on, product distribution studies15 of the ionic addition of chlorine to conjugated dienes, and in particular to cyclopentadiene, 1,3-cyclohexadiene, cis,cis-, trans,trans-and c ,fraws-2,4-hexadienes, and cis- and trans-1,3-pentadienes have supplied the first stereochemical data, showing that the stereochemistry of 1,4-addition is predominantly syn, although to an extent smaller than that of bromine addition. Moreover, the 1,2-addition is generally non stereoselective, except for the addition to the 3,4-bond of cis-and trans-1,3-pentadienes where the attack is 89-95% anti. Finally, appreciable amounts of cis- 1,2-dichlorides were obtained from the two cyclic dienes, whereas 2,4-hexadienes showed a preference for anti 1,2-addition, at least in the less polar solvents (carbon tetrachloride and pentane). On the basis of all these results the mechanism shown in equation 29 was proposed. [Pg.565]

A mechanistic scheme involving weakly bridged intermediates, liable to undergo carbon-carbon bond rotation and counteranion translocation, analogous to that proposed for chlorination (see above), has been reported also for the bromination of dienes in order to rationalize the product stereochemistry. [Pg.574]


See other pages where Chlorine stereochemistry is mentioned: [Pg.391]    [Pg.391]    [Pg.391]    [Pg.404]    [Pg.391]    [Pg.391]    [Pg.391]    [Pg.404]    [Pg.61]    [Pg.420]    [Pg.96]    [Pg.172]    [Pg.187]    [Pg.330]    [Pg.290]    [Pg.467]    [Pg.80]    [Pg.60]    [Pg.238]    [Pg.352]    [Pg.467]    [Pg.298]    [Pg.279]    [Pg.170]    [Pg.198]    [Pg.388]    [Pg.389]    [Pg.31]    [Pg.33]    [Pg.201]    [Pg.159]    [Pg.154]    [Pg.639]    [Pg.434]    [Pg.269]    [Pg.171]    [Pg.565]   
See also in sourсe #XX -- [ Pg.806 ]

See also in sourсe #XX -- [ Pg.393 ]

See also in sourсe #XX -- [ Pg.806 ]




SEARCH



Radical chlorination stereochemistry

© 2024 chempedia.info