Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactions esterification

The control of chemical reactions (e.g., esterification, sulfonation, nitration, alkylation, polymerization, oxidation, reduction, halogenation) and associated hazards are an essential aspect of chemical manufacture in the CPI. The industries manufacture nearly all their products, such as inorganic, organic, agricultural, polymers, and pharmaceuticals, through the control of reactive chemicals. The reactions that occur are generally without incident. Barton and Nolan [1] examined exothermic runaway incidents and found that the principal causes were ... [Pg.910]

In recent years, the rate of information available on the use of ion-exchange resins as reaction catalysts has increased, and the practical application of ion-exchanger catalysis in the field of chemistry has been widely developed. Ion-exchangers are already used in more than twenty types of different chemical reactions. Some of the significant examples of the applications of ion-exchange catalysis are in hydration [1,2], dehydration [3,4], esterification [5,6], alkylation [7], condensation [8-11], and polymerization, and isomerization reactions [12-14]. Cationic resins in form, also used as catalysts in the hydrolysis reactions, and the literature on hydrolysis itself is quite extensive [15-28], Several types of ion exchange catalysts have been used in the hydrolysis of different compounds. Some of these are given in Table 1. [Pg.775]

Each functional group of an amino acid exhibits all of its characteristic chemical reactions. For carboxylic acid groups, these reactions include the formation of esters, amides, and acid anhydrides for amino groups, acylation, amidation, and esterification and for —OH and —SH groups, oxidation and esterification. The most important reaction of amino acids is the formation of a peptide bond (shaded blue). [Pg.18]

Among the different chemical reactions usable to synthesize polymeric materials by step polymerisation are esterification, amidation, nucleophilic aromatic substitution and urethane (carbamate) formation. Polymerisation... [Pg.53]

A common characteristic to all the chemical reactions involved in step polymerisation that should be emphasised is that they are most often equilibrated reactions. For instance, the polyesterification reaction is based on the esterification/hydrolysis equilibrium... [Pg.55]

Syntheses of aliphatic polyesters by fermentation and chemical processes have been extensively studied from the viewpoint of biodegradable materials science. Recently, another approach to their production has been made by using an isolated lipase or esterase as catalyst via non-biosynthetic pathways under mild reaction conditions. Lipase and esterase are enzymes which catalyze hydrolysis of esters in an aqueous environment in living systems. Some of them can act as catalyst for the reverse reactions, esterifications and transesterifications, in organic media [1-5]. These catalytic actions have been expanded to... [Pg.240]

This equipment could be used for chemical reactions based on a strong solid-gas interaction with gas adsorbed on powder such as limited air oxidation or with gas release (water, ammonia) such as esterification. The oversized applicator structure permits the design of dielectric pipe to manage such matter transfers. This equipment can be also used for many reactions on solid supports. A typical unit is powered with microwave generators units of 2 or 6 kW for a total microwave power close to 20 or 60 kW. [Pg.31]

Another important use of solubility parameters is in interpreting the effects of different solvents on the rates of reactions. In a chemical reaction, it is the concentration of the transition state that determines the rate of the reaction. Depending on the characteristics of the transition state, the solvent used can either facilitate or hinder its formation. For example, a transition state that is large and has little charge separation is hindered in its formation by using a solvent that has a high value of S. The volume of activation is usually positive for forming such a transition state which requires expansion of the solvent. A reaction of this type is the esterification of acetic anhydride with ethyl alcohol ... [Pg.206]

Solutions containing ions give chemical reactions expected of the ions. For example, mesitoic acid, which resists esterification by other methods, is readily esterified when its sulfuric acid solution is poured into an alcohol.177... [Pg.86]

In general, the structure of sol gel materials evolves sequentially as the product of successive and/or simultaneous hydrolysis and condensation and their reverse reactions (esterification and depolymerization). Thus, in principle, by chemical control of the mechanisms and kinetics of these reactions, namely the catalytic conditions, it is possible to tailor the structure (and properties) of the gels over a wide range. For example, stable silica xerogels of tailored particle dimensions, pore morphology, density and porosity, from relatively... [Pg.27]

There are several chemical reactions that can be used as an alternative to achieve covalent functionalization of CNTs. Two of them are amidation and/or esterification reactions. Both reactions take advantage of the carboxylic groups sitting on the side-walls and tips of CNTs. In particular, they are converted to acyl chloride groups (-C0-C1) via a reaction with thionyl (SO) or oxalyl chloride before adding an alcohol or an amine. This procedure is very versatile and allows the functionalization of CNTs with different entities such as biomolecules [154-156], polymers [157], and organic compounds [158,159] among others. [Pg.82]

The triacylglycerols have three latty acids esterilied to the three hydroxyl groups of the glycerol backbone. Esterification is a chemical reaction during which a hydroxyl and a carboxyl group react to form an ester. As illustrated in Figure 22.13, one molecule... [Pg.585]

The refractory compounds in the HMW DOM pool seems to be generated through abiotic reactions that act to link degradation products into macromolecules. These new chemical bonds create molecular structures that enhance the overall refractory nature of the DOM. The chemical changes lead to increased crosslinking, aromaticity, cyclization, esterification, and nitrogen depletion. The general types of chemical reactions responsible are oxidations, polymerizations, and condensations. Considerable debate exists as to whether these reactions are wholly abiotic or whether they are, at least in part, microbially mediated. [Pg.634]

A broad spectrum of chemical reactions can be catalyzed by enzymes Hydrolysis, esterification, isomerization, addition and elimination, alkylation and dealkylation, halogenation and dehalogenation, and oxidation and reduction. The last reactions are catalyzed by redox enzymes, which are classified as oxidoreductases and divided into four categories according to the oxidant they utilize and the reactions they catalyze 1) dehydrogenases (reductases), 2) oxidases, 3) oxygenases (mono- and dioxygenases), and 4) peroxidases. The latter enzymes have received extensive attention in the last years as bio catalysts for synthetic applications. Peroxidases catalyze the oxidation of aromatic compounds, oxidation of heteroatom compounds, epoxidation, and the enantio-selective reduction of racemic hydroperoxides. In this article, a short overview... [Pg.74]

In many chemical reactions like esterification, acetalisation, ketalisation or etherification, water is produced as an unwanted by-product. As esterifications are... [Pg.531]

One of the consequences of forming a cyclic hemi-acetal or hemiketal is that the nucleophilic hydroxyl adds to the carbonyl group and forms a new hydroxyl. This new group is susceptible to many normal chemical reactions of hydroxyls, e.g. esterification, and this type of reaction effectively freezes the carbohydrate into one anomeric form, since the ringopening and equilibration can now no longer take place. Consider esterification of glucose with acetic anhydride (see Section 7.9.1). P-o-Glucose will be... [Pg.473]

Many of the common condensation polymers are listed in Table 1-1. In all instances the polymerization reactions shown are those proceeding by the step polymerization mechanism. This chapter will consider the characteristics of step polymerization in detail. The synthesis of condensation polymers by ring-opening polymerization will be subsequently treated in Chap. 7. A number of different chemical reactions may be used to synthesize polymeric materials by step polymerization. These include esterification, amidation, the formation of urethanes, aromatic substitution, and others. Polymerization usually proceeds by the reactions between two different functional groups, for example, hydroxyl and carboxyl groups, or isocyanate and hydroxyl groups. [Pg.39]

Similar equipment for applications on the laboratory scale has been reported (and has recently been commercialized) (69-72). Most of the reported applications had the aim of investigating kinetics of chemical reactions as indicated by changes in liquid-phase concentrations. The equipment can typically be used at elevated temperatures and pressures. Applications to heterogeneous catalytic reactions include investigations of the enantioselective hydrogenation of exocyclic a,p-unsaturated ketones catalyzed by Pd/C in the presence of (A)-proline (73) and the esterification of hexanoic acid with octanol catalyzed by a solid acid (the resin Nafion on silica) (74). [Pg.242]

In addition to these chemical reactions outlined above oxidation reactions also take place during the esterification process. [Pg.20]

Both the free hydroxyl groups readily undergo esterification. By chemical reaction with benzoyl chloride, dibenzoates are obtained, namely ... [Pg.128]

The rate of nitration of cellulose is dependent both on the rate of the chemical reaction of esterification itself, and on the rate of diffusion of the nitrating add into the cellulose fibres. This is discussed later (p. 356). [Pg.327]

Chemical Reactions. The reactions of dimer acids were reviewed fully in 1975. 1716 most important is polymerization the greatest quantities of dimer acids are incorporated into the non-nylon polyamides, Other reactions of dimer acids that are applied commercially include polyesterification, hydrogenation, esterification, and conversion of the carbuxy groups to various nitrogen-containing functional groups. [Pg.496]

BASIC PROTOCOL I PREPARATION OF FATTY ACID METHYL ESTERS FROM LIPID SAMPLES CATALYZED WITH BORON TRIFLUORIDE IN METHANOL In this method, lipid samples are first saponified with an excess of NaOH in methanol. Liberated fatty acids are then methylated in the presence of BF3 in methanol. The resulting fatty acid methyl esters (FAMEs) are extracted with an organic solvent (isooctane or hexane), and then sealed in GC sample vials for analysis. Because of the acidic condition and high temperature (100°C) used in the process, isomerization will occur to those fatty acids containing conjugated dienes, such as in dairy and ruminant meat products, that contain conjugated linoleic acids (CLA). If CLA isomers are of interest in the analysis, Basic Protocol 2 or the Alternate Protocol should be used instead. Based on experience, this method underestimates the amount of the naturally occurring cis-9, trans-11 CLA isomer by -10%. The formulas for the chemical reactions involved in this protocol are outlined in Equation D1.2.1 Saponification RCOO-R + NaOH, RCOO-Na + R -OH v 100°C DC Esterification RCOO-Na + CH,OH r 3 v RCOO-CH, + NaOH ioo°c ... [Pg.438]

Chemical reaction monitoring Polymerizations, esterifications and other condensation reactions, diazo reactions, oxidation, and reduction On-line and dip-probe applications... [Pg.126]


See other pages where Chemical reactions esterification is mentioned: [Pg.31]    [Pg.31]    [Pg.438]    [Pg.482]    [Pg.308]    [Pg.450]    [Pg.114]    [Pg.205]    [Pg.946]    [Pg.82]    [Pg.326]    [Pg.1]    [Pg.41]    [Pg.86]    [Pg.145]    [Pg.182]    [Pg.237]    [Pg.248]    [Pg.614]    [Pg.140]    [Pg.441]    [Pg.729]    [Pg.201]    [Pg.464]    [Pg.8]    [Pg.482]    [Pg.205]    [Pg.19]   
See also in sourсe #XX -- [ Pg.293 , Pg.294 ]




SEARCH



Esterification reaction

© 2024 chempedia.info