Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopy, cellulose

The acetyl content of cellulose acetate may be calculated by difference from the hydroxyl content, which is usually determined by carbanilation of the ester hydroxy groups in pyridine solvent with phenyl isocyanate [103-71-9J, followed by measurement of uv absorption of the combined carbanilate. Methods for determining cellulose ester hydroxyl content by near-infrared spectroscopy (111) and acid content by nmr spectroscopy (112) and pyrolysis gas chromatography (113) have been reported. [Pg.257]

Other two-dimensional techniques, such as COSY (122), DEPT (123), HOHAHA, soHd state (124) etc. give varying degrees of success when apphed to the stmcture-property relationship of cellulose triesters. The recent appHcation of multiple-bond correlation (HMBC) spectroscopy for... [Pg.258]

By using this technique acrylamide, acrylonitrile, and methyl acrylate were grafted onto cellulose [20]. In this case, oxidative depolymerization of cellulose also occurs and could yield short-lived intermediates [21]. They [21] reported an electron spin resonance spectroscopy study of the affects of different parameters on the rates of formation and decay of free radicals in microcrystalline cellulose and in purified fibrous cotton cellulose. From the results they obtained, they suggested that ceric ions form a chelate with the cellulose molecule, possibly, through the C2 and C3 hydroxyls of the anhy-droglucose unit. Transfer of electrons from the cellulose molecule to Ce(IV) would follow, leading to its reduction... [Pg.503]

The incorporation of water in the structure of cellulose influences. Upon the hydrogen bond structure of the macromolecule. A great deal of work has been done in this area. Calorimetric methods have been invaluable in helping to solve the problem 23 It is, however evident that solid-state NMR spectroscopy may also give valuable information. [Pg.8]

It is possible to indentify the ratios of carbohydrates (110-50 ppm), the ratio of aromatics (lignin) (150-130 ppm) and aliphatic acids and sterols (175 ppm, 40-15 ppm) from the spectra. In sample I cellulose signals were dominant, in sample II, on the other hand the aliphatic fractions were the major component. Sample III represented a balanced mixture of all three material groups. It was also possible to indentify the phosphate signal at 0 ppm by means of P-31 spectroscopy. [Pg.17]

As previously discussed, solvents that dissolve cellulose by derivatization may be employed for further functionahzation, e.g., esterification. Thus, cellulose has been dissolved in paraformaldehyde/DMSO and esterified, e.g., by acetic, butyric, and phthalic anhydride, as well as by unsaturated methacrylic and maleic anhydride, in the presence of pyridine, or an acetate catalyst. DS values from 0.2 to 2.0 were obtained, being higher, 2.5 for cellulose acetate. H and NMR spectroscopy have indicated that the hydroxyl group of the methy-lol chains are preferably esterified with the anhydrides. Treatment of celliflose with this solvent system, at 90 °C, with methylene diacetate or ethylene diacetate, in the presence of potassium acetate, led to cellulose acetate with a DS of 1.5. Interestingly, the reaction with acetyl chloride or activated acid is less convenient DMAc or DMF can be substituted for DMSO [215-219]. In another set of experiments, polymer with high o -celliflose content was esterified with trimethylacetic anhydride, 1,2,4-benzenetricarboylic anhydride, trimellitic anhydride, phthalic anhydride, and a pyridine catalyst. The esters were isolated after 8h of reaction at 80-100°C, or Ih at room temperature (trimellitic anhydride). These are versatile compounds with interesting elastomeric and thermoplastic properties, and can be cast as films and membranes [220]. [Pg.138]

Air Cellulose filter dry ashed, dissolved in HNO3/HF, H202/HCI04, purified with anion exchange, TRU-spec columns followed by electrodeposition. a -Spectroscopy 0.023 pCi/sample 102% Goldstein et al. 1997... [Pg.209]

Principles and Characteristics The prospects of Raman analysis for structural information depend upon many factors, including sample scattering strength, concentration, stability, fluorescence and background scattering/fluorescence from the TLC substrate. Conventional dispersive Raman spectroscopy has been considered as a tool for in situ analysis of TLC spots, since most adsorbents give weak Raman spectra and minimal interference with the spectra of the adsorbed species. Usually both silica and cellulose plates yield good-quality conventional Raman spectra, as opposed to polyamide plates. Detection limits for TLC fractions... [Pg.535]

Figure 7.37 Comparison of spectra of different TLC plates (a) silica gel (b) cellulose and (c) polyamide 11. After Everall et al. [779]. From N.J. Everall et al., Applied Spectroscopy, 46, 597-601 (1992). Reproduced by permission of the Society for Applied Spectroscopy... Figure 7.37 Comparison of spectra of different TLC plates (a) silica gel (b) cellulose and (c) polyamide 11. After Everall et al. [779]. From N.J. Everall et al., Applied Spectroscopy, 46, 597-601 (1992). Reproduced by permission of the Society for Applied Spectroscopy...
Because membrane filtration is the only currently acceptable method of sterilizing protein pharmaceuticals, the adsorption and inactivation of proteins on membranes is of particular concern during formulation development. Pitt [56] examined nonspecific protein binding of polymeric microporous membranes typically used in sterilization by membrane filtration. Nitrocellulose and nylon membranes had extremely high protein adsorption, followed by polysulfone, cellulose diacetate, and hydrophilic polyvinylidene fluoride membranes. In a subsequent study by Truskey et al. [46], protein conformational changes after filtration were observed by CD spectroscopy, particularly with nylon and polysulfone membrane filters. The conformational changes were related to the tendency of the membrane to adsorb the protein, although the precise mechanism was unclear. [Pg.703]

The phase composition of glycine crystal forms during the drying step of a wet granulation process has been studied, and a model developed for the phase conversion reactions [88], X-ray powder diffraction was used for qualitative analysis, and near-infrared spectroscopy for quantitative analysis. It was shown that when glycine was wet granulated with microcrystalline cellulose, the more rapidly the granulation... [Pg.274]

The kinetics of homogeneous reaction of several reactive dyes of the vinylsulphone type with methyl-a-D-glucoside (7.9), selected as a soluble model for cellulose, were studied in aqueous dioxan solution. The relative reactivities of the various hydroxy groups in the model compound were compared by n.m.r. spectroscopy and the reaction products were separated by a t.l.c. double-scanning method [38]. The only sites of reaction with the vinylsulphone system were the hydroxy groups located at the C4 and C6 positions [39,40]. [Pg.377]

The other approach originated from the physicochemical side, specifically X-ray spectroscopy of semicrystalline systems, in particular cellulose. Hermann Mark concluded that the microbuilding blocks contained but a small number of structural residues and that these were held together at distances corresponding to valence bonds and with forces of the intensity corresponding to valence forces (4). [Pg.46]

Detection of irradiated food containing cellulose - Method by ESR-spectroscopy... [Pg.101]

Preweighed 1.0 mg samples of each polysaccharide carbamate derivative were submerged in aqueous solutions at three pH values 3.1 7.0 and 11.3. Three milliliter aliquots were withdrawn at periodic intervals and analyzed by ultraviolet spectroscopy. Typical results are shown in Figures 3 and 4 for pendant hydrolysis rates of carbamate derivatives of cellulose and chitin respectively as a function of pH. [Pg.377]

In the other study. X-ray fluorescence spectroscopy was used to analyze trace element concentrations by observing dusts on 37 ram diameter cellulose acetate filters (20). Twenty-three elutriator and twenty-three area samples from 10 different bales of cotton were analyzed. The average fraction of total dust accounted for by the elements analyzed was 14.4% amd 7.6% for vertical elutriator and area samples, respectively. Although the variation in absolute quantity of atn element was high, the relative abundance of an element was consistent for measurements within a bale. Averaged over all the samples analyzed, calcium was the most abundant element detected (3.6%), followed by silicon (2.9%), potassium (2.7%), iron (1.1%), aluminum (1.1%), sulfur (1.0%), chlorine (0.8%) and phosphorous (0.6%). Other elements detected in smaller aunounts included titanium, manganese, nickel, copper, zinc, bromine, rubidium, strontium, barium, mercury amd lead. [Pg.318]

Rossi et al. [30] evaluated rheologically mucins of different origin with polyacrylic acid and sodium carboxymethyl cellulose. The same group also reported a novel rheological approach based on a stationary viscoelastic test (creep test) to describe the interaction between mucoadhesive polymers and mucins [31,32]. Jabbari et al. [33] used attenuated total-reflection infrared spectroscopy to investigate the ehain interpenetration of polyaciylic acid in the mucin interface. [Pg.177]

A. Gupta, G.E. Peck, R.W. Miller and K.R. Morris, Influence of ambient moisture on the compaction behavior of microcrystalline cellulose powder undergoing uni-axial compression and roller compaction a comparative study using near-infrared spectroscopy, J. Pharm. Sci., 94(10), 2301-2313 (2005). [Pg.458]

A.J. O Neil, R.D. Jee and A.C. Moffat, Measurement of the cumulative particle size distribution of microcrystalline cellulose using near infrared reflectance spectroscopy. Analyst, 124, 33-36 (1999). [Pg.490]


See other pages where Spectroscopy, cellulose is mentioned: [Pg.240]    [Pg.257]    [Pg.258]    [Pg.507]    [Pg.163]    [Pg.326]    [Pg.50]    [Pg.112]    [Pg.114]    [Pg.115]    [Pg.137]    [Pg.139]    [Pg.139]    [Pg.140]    [Pg.380]    [Pg.156]    [Pg.94]    [Pg.207]    [Pg.46]    [Pg.536]    [Pg.182]    [Pg.190]    [Pg.395]    [Pg.764]    [Pg.671]    [Pg.164]    [Pg.406]    [Pg.26]    [Pg.490]    [Pg.221]   
See also in sourсe #XX -- [ Pg.27 , Pg.39 ]




SEARCH



Cellulose Raman spectroscopy

Cellulose laser-Raman spectroscopy

Cellulose resonance spectroscopy

Electron spectroscopy cellulose

Infrared spectroscopy cellulose

Infrared spectroscopy cellulose acetate

Near-infrared spectroscopy microcrystalline cellulose

© 2024 chempedia.info