Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide dehydrogenase enzyme mechanisms

Several important homogeneous catalytic reactions (e.g. hydroformylations) have been accomplished in water by use of water-soluble catalysts in some instances water can act as a solvent and as a reactant for hydroformylation. In addition, formation of aluminoxanes by partial hydrolysis of alkylaluminum halides results in very high activity bimetallic Al/Ti or Al/Zr metallocene catalysts for ethene polymerization which would be otherwise inactive. Polymerization of aryl diiodides and acetylene gas has recently been achieved in water with palladium catalysts. Finally, nickel-containing enzymes, such as carbon monoxide dehydrogenase (CODH) and acetyl-CoA synthase, operate in water with reaction mechanisms comparable with those of the WGSR or of the Monsanto methanol-to-acetic-acid process. ... [Pg.799]

Fig. 5. Proposed mechanism of ATP synthesis coupled to methyl-coenzyme M (CH3-S-C0M) reduction to CH4 The reduction of the heterodisulfide (CoM-S-S-HTP) as a site for primary translocation. ATP is synthesized via membrane-bound -translocating ATP synthase. CoM-S-S-HTP, heterodisulfide of coenzyme M (H-S-CoM) and 7-mercaptoheptanoylthreonine phosphate (H-S-HTP) numbers in circles, membrane-associated enzymes (1) CH3-S-C0M reductase (2) dehydrogenase (3) heterodisulfide reductase 2[H] can be either H2, reduced coenzymeF420 F420H2) or carbon monoxide the hatched box indicates an electron transport chain catalyzing primary translocation the stoichiometry of translocation (2H /2e , determined in everted vesicles) was taken from ref. [117] z is the unknown If /ATP stoichiometry A/iH, transmembrane electrochemical... Fig. 5. Proposed mechanism of ATP synthesis coupled to methyl-coenzyme M (CH3-S-C0M) reduction to CH4 The reduction of the heterodisulfide (CoM-S-S-HTP) as a site for primary translocation. ATP is synthesized via membrane-bound -translocating ATP synthase. CoM-S-S-HTP, heterodisulfide of coenzyme M (H-S-CoM) and 7-mercaptoheptanoylthreonine phosphate (H-S-HTP) numbers in circles, membrane-associated enzymes (1) CH3-S-C0M reductase (2) dehydrogenase (3) heterodisulfide reductase 2[H] can be either H2, reduced coenzymeF420 F420H2) or carbon monoxide the hatched box indicates an electron transport chain catalyzing primary translocation the stoichiometry of translocation (2H /2e , determined in everted vesicles) was taken from ref. [117] z is the unknown If /ATP stoichiometry A/iH, transmembrane electrochemical...

See other pages where Carbon monoxide dehydrogenase enzyme mechanisms is mentioned: [Pg.80]    [Pg.192]    [Pg.278]    [Pg.464]    [Pg.236]    [Pg.72]    [Pg.265]    [Pg.372]    [Pg.120]    [Pg.124]    [Pg.314]   
See also in sourсe #XX -- [ Pg.522 , Pg.523 ]

See also in sourсe #XX -- [ Pg.522 , Pg.523 ]




SEARCH



Carbon mechanism

Carbon monoxide dehydrogenase dehydrogenases

Carbon monoxide dehydrogenase mechanism

Carbon monoxide mechanism

Enzyme mechanism

Enzymes carbon

Enzymes dehydrogenase

Mechanism dehydrogenase

© 2024 chempedia.info