Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substituents, bulky

Syntheses of alkenes with three or four bulky substituents cannot be achieved with an ylide or by a direct coupling reaction. Sterical hindrance of substituents presumably does not allow the direct contact of polar or radical carbon synthons in the transition state. A generally applicable principle formulated by A. Eschenmoser indicates a possible solution to this problem //an intermolecular reaction is complex or slow, it is advisable to change the educt in such a way. that the critical bond formation can occur intramolecularly (A. Eschenmoser, 1970). [Pg.34]

A major difficulty with the Diels-Alder reaction is its sensitivity to sterical hindrance. Tri- and tetrasubstituted olefins or dienes with bulky substituents at the terminal carbons react only very slowly. Therefore bicyclic compounds with polar reactions are more suitable for such target molecules, e.g. steroids. There exist, however, several exceptions, e. g. a reaction of a tetrasubstituted alkene with a 1,1-disubstituted diene to produce a cyclohexene intermediate containing three contiguous quaternary carbon atoms (S. Danishefsky, 1979). This reaction was assisted by large polarity differences between the electron rich diene and the electron deficient ene component. [Pg.86]

Synthetically useful stereoselective reductions have been possible with cyclic carbonyl compounds of rigid conformation. Reduction of substituted cyclohexanone and cyclopentan-one rings by hydrides of moderate activity, e.g. NaBH (J.-L. Luche, 1978), leads to alcohols via hydride addition to the less hindered side of the carbonyl group. Hydrides with bulky substituents 3IQ especially useful for such regio- and stereoselective reductions, e.g. lithium hydrotri-t-butoxyaluminate (C.H. Kuo, 1968) and lithium or potassium tri-sec-butylhydro-borates or hydrotri-sec-isoamylborates (=L-, K-, LS- and KS-Selectrides ) (H.C. Brown, 1972 B C.A. Brown, 1973 S. Krishnamurthy, 1976). [Pg.107]

Aminothiazole (58, 235, 391) and 2-amino-4-alkylthiazoles (391. 399) couple with diazonium salts. This reaction takes place in the 5-position and is possible even when bulky substituents occupy the 4-position. as exemplified by the reaction of 191 (Scheme 121) (400. 401). Me... [Pg.76]

Curiously enough, bulky substituents on nitrogen increase this reactivity towards methyl iodide (119). This has been related to a steric decompression of the thiocarbonyl group in the transition state. Furthermore, knowledge of the ratio of conformers in the starting 4-alkyl-3-i-Pr-A-4-thiazoline-2-thiones and in the resulting 4-alkyl-3-i-Pr-2-methylthiothi-azolium iodides combined with a Winstein-Holness treatment of the kinetic data indicates that in the transition state, the thiocarbonyl bond is approximately 65% along the reaction coordinate from the initial state... [Pg.391]

In the foregoing discussions of theoretical models and experimental results, we have focused on linear polymers. We have seen the effect of chain substituents on viscosity. All other things being equal, bulky substituents tend to decrease f and thereby lower 17. The effect is primarily due to the opening up of the liquid because of the steric interference with efficient packing arising from the substituents. With side chains of truly polymeric character, the picture is quite different. [Pg.124]

The effect of a bulky substituent like a phenyl group on the hydrocarbon chain apparently decreases chain flexibiUty sufficiently to allow more intimate alignment between molecules, less free volume, and therefore a high value for Tg. [Pg.255]

Thus, except for electron-withdrawiag or bulky substituents, at least from the standpoiat of reactivity toward polymerization, modification by most other substituents is possible. [Pg.429]

Properties. One of the characteristic properties of the polyphosphazene backbone is high chain dexibility which allows mobility of the chains even at quite low temperatures. Glass-transition temperatures down to —105° C are known with some alkoxy substituents. Symmetrically substituted alkoxy and aryloxy polymers often exhibit melting transitions if the substituents allow packing of the chains, but mixed-substituent polymers are amorphous. Thus the mixed substitution pattern is deUberately used for the synthesis of various phosphazene elastomers. On the other hand, as with many other flexible-chain polymers, glass-transition temperatures above 100°C can be obtained with bulky substituents on the phosphazene backbone. [Pg.257]

Dimeric aldoketenes and ketoketenes of P-lactone stmcture show a chemical behavior which is not much different to that of diketene. Thus nucleophiles add ia similar fashion to give derivatives of 3-ketoacids which are mono- or dialkylated at C-2 (aldo- and ketoketene dimers, respectively), but the reaction can often be slower than with the parent compound and, ia case of long-chain or bulky substituents, may not proceed at all. Other reactions can proceed differendy than those with diketene. For an overview of important reactions of aldoketene and ketoketene dimers see Reference 122. [Pg.479]

There is a health benefit associated with hindering hydrogen bonding. Alkylphenols as a class are generally regarded as corrosive health hazards, but this corrosivity is eliminated when the hydroxyl group is flanked by bulky substituents in the ortho positions. In fact, hindered phenols as a class of compounds are utilized as antioxidants in plastics with FDA approval for indirect food contact. [Pg.58]

The /-butyl derivative [87487-06-9] reacts with ammonia as shown in equation 15 to yield a stable primary aminoborane [99748-68-2] (48). The stabiUty of primary aminoboranes has been attributed to the presence of a bulky substituent on boron (49). [Pg.263]

Synthesis. Iminoboranes, thermodynamically unstable with respect to oligomerization can be isolated under laboratory conditions by making the oligomerization kineticaHy unfavorable. This is faciUtated by bulky substituents, high dilution, and low temperatures. The vacuum gas-phase pyrolysis of (trimethylsilylarnino)(aLkyl)haloboranes has been utilized as an effective method of generating iminoboranes RB=NR as shown in equation 19 for X = F,... [Pg.264]

In contrast to the hydrolysis of prochiral esters performed in aqueous solutions, the enzymatic acylation of prochiral diols is usually carried out in an inert organic solvent such as hexane, ether, toluene, or ethyl acetate. In order to increase the reaction rate and the degree of conversion, activated esters such as vinyl carboxylates are often used as acylating agents. The vinyl alcohol formed as a result of transesterification tautomerizes to acetaldehyde, making the reaction practically irreversible. The presence of a bulky substituent in the 2-position helps the enzyme to discriminate between enantiotopic faces as a result the enzymatic acylation of prochiral 2-benzoxy-l,3-propanediol (34) proceeds with excellent selectivity (ee > 96%) (49). In the case of the 2-methyl substituted diol (33) the selectivity is only moderate (50). [Pg.336]

Hydrolysis reactions involving tetrahedral intermediates are subject to steric and electronic effects. Electron-withdrawing substituents faciUtate, but electron-donating and bulky substituents retard basic hydrolysis. Steric effects in acid-cataly2ed hydrolysis are similar to those in base-cataly2ed hydrolysis, but electronic effects are much less important in acid-cataly2ed reactions. Higher temperatures also accelerate the reaction. [Pg.388]

AT-Oxidation is very sensitive to steric effects, since 1-substituted lumazines and pterins give only 5-oxides and the presence of bulky substituents at position 7 also directs oxidation to N-5. The pteridine 5-oxide (52) and 8-oxide (53) and the 5,8-dioxide (55) contain the AT-oxide groups as such, even when the possibility of AT-hydroxy tautomers exists, as in (53) i(54). [Pg.281]

Dithiolane (132) derivatives also possess non-planar skeletons the most important conformation is probably of symmetry C2 (half-chair). The dithiolane ring may be quite flexible and a minimum energy. conformation is only well defined if there is a bulky substituent at the 2-position. [Pg.35]

The pK values are approximately additive and a linear relationship of the type pKT " -pK° + Y. pKm holds for the whole set (pK° is the pK. of pyrazole itself and is the effect of a substituent m at position n). Deviation from the additivity is found when two bulky substitu ts are in contiguous positions. Instead of discussing pK, values, the authors consider ApisTm which are mean values and thus more significant since they correspond to several pairs of compounds. [Pg.223]

However, the thermolysis of diacylfuroxans (429) yielded two types of nitrile Af-oxides. An uncrowded diacylfuroxan such as (429a) rearranged to the a- acyloximino nitrile A-oxide (430) the diacylfuroxan with bulky substituents such as in (429b) gave rise to the half molecule acyl nitrile Af-oxide (431). Both types of nitrile Af-oxides (431) and (430) have been trapped with DMAD and hexafluoro-2-butyne to give isoxazoles in good yield. These reactions are shown in Scheme 97. [Pg.81]

Other limitations of the reaction are related to the regioselectivity of the aryl radical addition to double bond, which is mainly determined by steric and radical delocalization effects. Thus, methyl vinyl ketone gives the best results, and lower yields are observed when bulky substituents are present in the e-position of the alkene. However, the method represents complete positional selectivity because only the g-adduct radicals give reductive arylation products whereas the a-adduct radicals add to diazonium salts, because of the different nucleophilic character of the alkyl radical adduct. ... [Pg.70]

Rotation hindered by bulky substituents (f-butyl groups)... [Pg.63]

In contrast to phosphorus esters, sulfur esters are usually cleaved at the carbon-oxygen bond with carbon-fluorine bond formation Cleavage of esteri nf methanesulfonic acid, p-toluenesidfonic acid, and especially trifluoromethane-sulfonic acid (tnflic acid) by fluoride ion is the most widely used method for the conversion of hydroxy compounds to fluoro derivatives Potassium fluoride, triethylamine trihydrofluoride, and tetrabutylammonium fluoride are common sources of the fluoride ion For the cleavage of a variety of alkyl mesylates and tosylates with potassium fluoride, polyethylene glycol 400 is a solvent of choice, the yields are limited by solvolysis of the leaving group by the solvent, but this phenomenon is controlled by bulky substituents, either in the sulfonic acid part or in the alcohol part of the ester [42] (equation 29)... [Pg.211]

However, when the bulky substituent is no longer present at the electrophilic carbon atom, the addition of the olefin to the morpholine enamine of cyclohexanone leads largely to the tetrasubstituted isomer. For instance the reaction of this enamine with phenyl vinyl sulfone gave a 1 3 mixture of... [Pg.13]

The preferred formation of the tetrasubstituted isomer with the olefin without any bulky substituent at the electrophilic carbon atom is undoubtedly due to the preponderance of that conformation of the dipolar intermediate in which the substituent is syn to the morpholine group, as shown in (41). The situation is, however, reversed in case of the olefin with... [Pg.16]

However, uranocene can be made more air-stable by use of sufficiently bulky substituents, and 1,3,5,7-tetraphenylcyclo-octatetraene yields the completely air-stable [U( -CgH4Ph4)2], in which the parallel ligands are virtually eclipsed but the phenyl substituents staggered and rotated on average 42° out of the Cg ring plane (Fig. 31.10). [Pg.1280]


See other pages where Substituents, bulky is mentioned: [Pg.91]    [Pg.304]    [Pg.114]    [Pg.30]    [Pg.60]    [Pg.116]    [Pg.67]    [Pg.218]    [Pg.403]    [Pg.265]    [Pg.32]    [Pg.209]    [Pg.224]    [Pg.92]    [Pg.894]    [Pg.67]    [Pg.586]    [Pg.117]    [Pg.217]    [Pg.129]    [Pg.212]    [Pg.1109]    [Pg.16]    [Pg.36]    [Pg.168]   
See also in sourсe #XX -- [ Pg.121 ]




SEARCH



Bulkiness

Bulky substituent

Bulky substituent

Bulky substituent effect

Disiloxanetetraol with bulky aryl substituent

Insertion of Bulky Substituent to Control the Reactivity

Lewis acids bulky substituents

Monomers with Bulky Side Substituents

Nickel bulky substituents

Organometallic compounds effect of bulky substituents on stability

Palladium bulky substituents

Polymers with Stiff, Bulky Substituents

Rotation by bulky substituents

Silanetriols With Bulky Aryl Substituent 2,4,6-Triisopropylphenylsilanetriol

Silanetriols with bulky alkyl substituent

Silanetriols with bulky aryl substituent

© 2019 chempedia.info