Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Buffer layer Reynolds analogy

The original Reynolds analogy involves a number of simplifying assumptions which are justifiable only in a limited range of conditions. Thus it was assumed that fluid was transferred from outside the boundary layer to the surface without mixing with the intervening fluid, that it was brought to rest at the surface, and that thermal equilibrium was established. Various modifications have been made to this simple theory to take account of the existence of the laminar sub-layer and the buffer layer close to the surface. [Pg.725]

Taylor(4) and Prandtl(8 9) allowed for the existence of the laminar sub-layer but ignored the existence of the buffer layer in their treatment and assumed that the simple Reynolds analogy was applicable to the transfer of heal and momentum from the main stream to the edge of the laminar sub-layer of thickness <5. Transfer through the laminar sub-layer was then presumed to be attributable solely to molecular motion. [Pg.725]

Von Karman further modified the Prandtl analogy by considering the buffer region in addition to the viscous sublayer and the turbulent core. These three regions are shown in the universal velocity profile in Fig. 3.10-4. Again, an equation is written for molecular diffusion in the viscous sublayer using only the molecular diffusivity and a Reynolds analogy equation for the turbulent core. Both the molecular and eddy diffusivity are used in an equation for the buffer layer, where the velocity in this layer is used to obtain an... [Pg.439]


See other pages where Buffer layer Reynolds analogy is mentioned: [Pg.720]    [Pg.720]   
See also in sourсe #XX -- [ Pg.728 ]




SEARCH



Reynold

© 2024 chempedia.info