Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bromine atom

The determination of absolute rate coefficients of transfer reactions of bromine atoms is much more favourable than for the corresponding reactions of fluorine or chlorine atoms. This arises because the dissociation constant of molecular bromine is high at normal experimental temperatures and the chain lengths in bromination are relatively short. The rate constant of the reaction of bromine atoms with molecular hydrogen was the first quantitative kinetic study of a radical reaction [96]. Fettis and Knox [52] evaluated the data for the Br—Hj reaction and their results are given in Table 7. Trotman-Dickenson [1] has pointed out that the subsequent data of Timmons and Weston [80] for the reaction with Hj, HD and HT are not fully compatible with the conclusions of Pettis and Knox [52]. [Pg.49]

Most of the Arrhenius parameters listed in Table 7 for the bromine atom reactions have been determined in competitive experiments [Pg.49]

Metathetical reactions of bromine atoms transfer of hydrogen [Pg.50]

These fluorocarbon molecules have the advantage that the brominations yield single products, CF3Br and C2FsBr, whereas the alkanes can produce several products by stepwise bromination. The absolute data on these two reactions have been coupled with several sets of competitive experiments involving one of this pair of reactants to yield much of the data listed in Table 7. [Pg.51]


The first stage (a) of the reaction represents the dissociation of bromine into bromine atoms. Both steps (b) and (c) lead to production of HBr, and since bromine atoms are... [Pg.89]

This method follows the ASTM D 1159 and D 2710 procedures and the AFNOR M 07-017 standard. It exploits the capacity of the double olefinic bond to attach two bromine atoms by the addition reaction. Expressed as grams of fixed bromine per hundred grams of sample, the bromine number, BrN, enables the calculation of olefinic hydrocarbons to be made if the average molecular weight of a sufficiently narrow cut is known. [Pg.83]

Although the transition to difhision control is satisfactorily described in such an approach, even for these apparently simple elementary reactions the situation in reality appears to be more complex due to the participation of weakly bonding or repulsive electronic states which may become increasingly coupled as the bath gas density increases. These processes manifest tliemselves in iodine atom and bromine atom recombination in some bath gases at high densities where marked deviations from TronnaF behaviour are observed [3, 4]. In particular, it is found that the transition from Lto is significantly broader than... [Pg.846]

Copper 1) chloride, bromide and cyanide were used by Sandmeyer to introduce a chlorine, a bromine atom and a cyanide group respectively into a benzene ring by addition to the phenyl diazonium salt. [Pg.416]

Aniline undergoes very ready nuclear substitution by bromine even in the cold, the bromine atoms entering the two ortho positions and the para position with the formation of symmetric or 2,4.6-tribromoaniline. The presence... [Pg.165]

Bromobenzene is a colourless liquid of b.p. 156°, and d, 1 50 it has a faint agreeable odour. The bromine atom, being directly joined to the benzene ring, is very inert, and the only common reactions in which it is split off from the ring are the Fittig reaction (p. 288) and the Grignard reagent (pp. 280-284). [Pg.176]

The stereospedfic and regioselective hydrobromination of alkynes with chlorobis(T -cyclopentadienyl)hydrozirconium and NBS produces ( )-vinylic bromides in good yields. The bromine atom usually adds regioselectively to the carbon atom that bears the smaller substituent and stereoselectively trans to the larger substituent (D.W. Hart, 1975 M. Nakatsuka,... [Pg.132]

As a further electrophilic substitution the bromination of selenazoles has been investigated. This is not as complicated as nitration. Bromination was carried out in several solvents and with various amounts of bromine. In spite of the great variation in conditions, monobromo derivatives containing the bromine atom in the 5-position are always formed. This could be established, for example, by the bromination of the 2-amino-4-p-nitrophenylselenazole (Scheme 34) and its 2-benzamino compound (98). The 2-benzamido bromo compound gives the same bromo... [Pg.243]

Higher atomic number takes precedence over lower Bromine (atomic number 35) outranks chio rine (atomic number 17) Methyl (C atomic number 6) outranks hydrogen (atomic number 1)... [Pg.195]

Addition of a bromine atom to C 1 gives a secondary alkyl radical... [Pg.243]

A secondary alkyl radical is more stable than a primary radical Bromine therefore adds to C 1 of 1 butene faster than it adds to C 2 Once the bromine atom has added to the double bond the regioselectivity of addition is set The alkyl radical then abstracts a hydrogen atom from hydrogen bromide to give the alkyl bromide product as shown m... [Pg.243]

The regioselectivity of addition of HBr to alkenes under normal (electrophilic addi tion) conditions is controlled by the tendency of a proton to add to the double bond so as to produce the more stable carbocatwn Under free radical conditions the regioselec tivity IS governed by addition of a bromine atom to give the more stable alkyl radical Free radical addition of hydrogen bromide to the double bond can also be initiated photochemically either with or without added peroxides... [Pg.244]

The reaction of chlorine and bromine with cycloalkenes illustrates an important stereo chemical feature of halogen addition Anti addition is observed the two bromine atoms of Br2 or the two chlorines of CI2 add to opposite faces of the double bond... [Pg.256]

The relative rates of reaction of ethane toluene and ethylbenzene with bromine atoms have been measured The most reactive hydrocarbon undergoes hydrogen atom abstraction a million times faster than does the least reactive one Arrange these hydrocarbons in order of decreasing reactivity... [Pg.470]

Compounds that contain chlorine, bromine, sulfur, or silicon are usually apparent from prominent peaks at masses 2, 4, 6, and so on, units larger than the nominal mass of the parent or fragment ion. Eor example, when one chlorine atom is present, the P + 2 mass peak will be about one-third the intensity of the parent peak. When one bromine atom is present, the P + 2 mass peak will be about the same intensity as the parent peak. The abundance of heavy isotopes is treated in terms of the binomial expansion (a -I- h) , where a is the relative abundance of the light isotope, b is the relative abundance of the heavy isotope, and m is the number of atoms of the particular element present in the molecule. If two bromine atoms are present, the binomial expansion is... [Pg.812]

Partial mass spectra showing the isotope patterns in the molecular ion regions for ions containing carbon and (a) only one chlorine atom, (b) only one bromine atom, and (c) one chlorine and one bromine atom. The isotope patterns are quite different from each other. Note how the halogen isotope ratios appear very clearly as 3 1 for chlorine in (a), 1 1 for bromine in (b), and 3 4 1 for chlorine and bromine in (c). If the numbers of halogens were not known, the pattern could be used in a reverse sense to decide their number. [Pg.349]

Unlike the situation regarding the crossing between the Vq and Fj potentials for Nal (see Figure 9.41), that for NaBr results in very efficient and rapid dissociation to give Na + Br when it is excited to Fj. Flow would you expect the fluorescence intensity from the neutral bromine atoms to vary with time compared with that for iodine atoms from Nal in Figure 9.42 ... [Pg.405]

Bromination can be conveniently effected by transfer of bromine from one nucleus to another. As the Friedel-Crafts isomerization of bromoaromatic compounds generally takes place through an intermolecular mechanism, the migrating bromine atom serves as a source of positive bromine, thus effecting ring brominations (161,162). 2,4,6-Tribromophenol, for example, has been prepared by bromination of phenol with dibromobenzene. [Pg.561]

Bulky, even if highly polari2able, functional groups or atoms that are attached anywhere but on the end of a rod-shaped molecule usually are less favorable for Hquid crystal formation. Enhanced intermolecular attractions are more than countered as the molecule deviates from the required linearity. For example, the inclusion of the bromine atom at position three of 4-decyloxy-3-bromoben2oic acid [5519-23-3] (9) prevents mesomorphic behavior. In other cases the Hquid crystal phases do not disappear, but their ranges are narrower. [Pg.199]

V-Bromosuccinimide and A/,A7-dibromo-5,5-dimethyIhydantoin have also been used successhdly, which makes possible recycling of succinimide or the hydantoin and utilizes all the bromine atoms. A mixture of sodium bromide—sodium bromate in aqueous acid has also been used commercially. [Pg.19]

Introduction of a 3-bromosubstituent onto thiophene is accompHshed by initial tribromination, followed by reduction of the a-bromines by treatment with zinc/acetic acid, thereby utilizing only one of three bromines introduced. The so-called halogen dance sequence of reactions, whereby bromothiophenes are treated with base, causing proton abstraction and rearrangement of bromine to the produce the most-stable anion, has also been used to introduce a bromine atom at position 3. The formation of 3-bromotbiopbene [872-31-1] from this sequence of reactions (17) is an efficient use of bromine. Vapor-phase techniques have also been proposed to achieve this halogen migration (18), but with less specificity. Table 3 summarizes properties of some brominated thiophenes. [Pg.19]

Such a reaction is controlled by the rate of addition of the acid. The two-phase system is stirred throughout the reaction the heavy product layer is separated and washed thoroughly with water and alkaU before distillation (Fig. 3). The alkaU treatment is particularly important and serves not just to remove residual acidity but, more importantiy, to remove chemically any addition compounds that may have formed. The washwater must be maintained alkaline during this procedure. With the introduction of more than one bromine atom, this alkaU wash becomes more critical as there is a greater tendency for addition by-products to form in such reactions. Distillation of material containing residual addition compounds is ha2ardous, because traces of acid become self-catalytic, causing decomposition of the stiU contents and much acid gas evolution. Bromination of alkylthiophenes follows a similar pattern. [Pg.21]

These reactions occur on the benzylic hydrogens because these hydrogens are much more reactive. Competition experiments show, for example, that at 40°C a benzylic hydrogen of toluene is 3.3 times as reactive toward bromine atoms as the tertiary hydrogen of an alkane and nearly 100 million times as reactive as a hydrogen of methane. [Pg.176]

Hydrogen haHde addition to vinyl chloride in general yields the 1,1-adduct (50—52). The reactions of HCl and hydrogen iodide [10034-85-2], HI, with vinyl chloride proceed by an ionic mechanism, while the addition of hydrogen bromide [10035-10-6], HBr, involves a chain reaction in which a bromine atom [10097-32-2] is the chain carrier (52). In the absence of a transition-metal catalyst or antioxidants, HBr forms the 1,2-adduct with vinyl chloride (52). HF reacts with vinyl chloride in the presence of stannic chloride [7646-78-8], SnCl, to form 1,1-difluoroethane [75-37-6] (53). [Pg.414]

Organic compounds of bromine usually resemble their chlorine analogues but have higher densities and lower vapor pressures. The bromo compounds are more reactive toward alkaUes and metals brominated solvents should generally be kept from contact with active metals such as aluminum. On the other hand, they present less fire hazard one bromine atom per molecule reduces flammabiUty about as much as two chlorine atoms. [Pg.293]

Methyl bromide slowly hydrolyzes in water, forming methanol and hydrobromic acid. The bromine atom of methyl bromide is an excellent leaving group in nucleophilic substitution reactions and is displaced by a variety of nucleophiles. Thus methyl bromide is useful in a variety of methylation reactions, such as the syntheses of ethers, sulfides, esters, and amines. Tertiary amines are methylated by methyl bromide to form quaternary ammonium bromides, some of which are active as microbicides. [Pg.294]

Another ancient dye is the deep blue indigo [482-89-3], the presence of two bromine atoms at positions gives the dye Tyrian purple [19201 -53-7] once laboriously extracted from certain sea shells and worn by Roman emperors. [Pg.419]

Many anthraquinone reactive and acid dyes are derived from bromamine acid. The bromine atom is replaced with appropriate amines in the presence of copper catalyst in water or water—alcohol mixtures in the presence of acid binding agents such as alkaU metal carbonate, bicarbonate, hydroxide, or acetate (Ullmaim condensation reaction). [Pg.310]

A Methylanthrapyridone and Its Derivatives. 6-Bromo-3-methylanthrapyridone [81-85-6] (75) is an important iatermediate for manufacturiag dyes soluble ia organic solvents. These solvent dyes are prepared by replacing the bromine atom with various kiads of aromatic amines. 6-Bromo-3-methylanthrapyridone is prepared from 1-methyl amino-4-bromoanthra quin one (43) by acetylation with acetic anhydride followed by ring closure ia alkaU. The startiag material of this route is anthraquiaoae-l-sulfonic acid (16). [Pg.317]

The second most important nucleophilic substitution in pyridazine A-oxides is the replacement of a nitro group. Nitro groups at the 3-, 4-, 5- and 6-position are easily substituted thermally with a chlorine or bromine atom, using acetyl chloride or hydrobromic acid respectively. Phosphorus oxychloride and benzoyl chloride are used less frequently for this purpose. Nitro groups in nitropyridazine A-oxides are easily replaced by alkoxide. The... [Pg.27]

In the last decade, the refrigerant issue is extensively discussed due to the accepted hypothesis that the chlorine and bromine atoms from halocarbons released to the environment were using up ozone in the stratosphere, depleting it specially above the polar regions. Montreal Protocol and later agreements ban use of certain CFCs and halon compounds. It seems that all CFCs and most of the HCFCs will be out of produc tion by the time this text will be pubhshed. [Pg.1124]


See other pages where Bromine atom is mentioned: [Pg.934]    [Pg.935]    [Pg.936]    [Pg.165]    [Pg.225]    [Pg.228]    [Pg.276]    [Pg.243]    [Pg.244]    [Pg.244]    [Pg.256]    [Pg.348]    [Pg.302]    [Pg.303]    [Pg.329]    [Pg.31]    [Pg.104]    [Pg.245]    [Pg.391]   
See also in sourсe #XX -- [ Pg.321 ]

See also in sourсe #XX -- [ Pg.213 ]

See also in sourсe #XX -- [ Pg.113 ]

See also in sourсe #XX -- [ Pg.93 ]




SEARCH



Addition of bromine atoms to double and triple bonds

Amino acids, bromination, solid-phase H-atom transfer

Atomic resonance absorption bromine atom

Bromine atom transfer

Bromine atom velocity

Bromine atomic physical properties

Bromine atomic properties

Bromine atomic purification

Bromine atomic radius

Bromine atoms, abstraction

Bromine atoms, abstraction reactions

Bromine atoms, combination

Bromine atoms, from decomposition

Bromine atoms, reaction

Bromine atoms, reaction with

Bromine reaction + alkali atoms

Bromine reaction + metal atoms

Bromine, atomic weight

Bromine, atomic weight chlorine compounds

Bromine, atomic weight fluorine compounds

Bromine, atomic weight iodine compounds

Bromine, atomic weight physical properties

Bromine, atomic weight preparation

Clusters for Up to Four Chlorine or Bromine Atoms

Endo bromine atom

Future Possibilities, the Bromine and Chlorine Atom Lasers

Isotopic abundances bromine atoms

Nucleophilic Displacement of Bromine or Chlorine Atoms with the Fluoride Anion

Nucleophilic Displacement of Bromine or Chlorine Atoms with the Fluoride Ion

Replacement, amino group by a bromine atom

Replacement, benzenesulfonate groups bromine atoms

Replacement, benzenesulfonate groups by bromine atoms

Replacement, benzenesulfonate groups hydroxyl group, by bromine atom

Replacement, of acetylenic hydrogen atom by bromine

Trans-bromine atom

© 2019 chempedia.info