Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boron complexes, 1,3-dipolar cycloadditions

The enantioselective inverse electron-demand 1,3-dipolar cycloaddition reactions of nitrones with alkenes described so far were catalyzed by metal complexes that favor a monodentate coordination of the nitrone, such as boron and aluminum complexes. However, the glyoxylate-derived nitrone 36 favors a bidentate coordination to the catalyst. This nitrone is a very interesting substrate, since the products that are obtained from the reaction with alkenes are masked a-amino acids. One of the characteristics of nitrones such as 36, having an ester moiety in the a position, is the swift E/Z equilibrium at room temperature (Scheme 6.28). In the crystalline form nitrone 36 exists as the pure Z isomer, however, in solution nitrone 36 have been shown to exists as a mixture of the E and Z isomers. This equilibrium could however be shifted to the Z isomer in the presence of a Lewis acid [74]. [Pg.233]

The reactions of nitrones constitute the absolute majority of metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions. Boron, aluminum, titanium, copper and palladium catalysts have been tested for the inverse electron-demand 1,3-dipolar cycloaddition reaction of nitrones with electron-rich alkenes. Fair enantioselectivities of up to 79% ee were obtained with oxazaborolidinone catalysts. However, the AlMe-3,3 -Ar-BINOL complexes proved to be superior for reactions of both acyclic and cyclic nitrones and more than >99% ee was obtained in some reactions. The Cu(OTf)2-BOX catalyst was efficient for reactions of the glyoxylate-derived nitrones with vinyl ethers and enantioselectivities of up to 93% ee were obtained. [Pg.244]

The direct cycloaddition adduct was oxidized, resulting in the hydroxylated isoxazoline product (316). Better selectivities were obtained in 1,3-dipolar cycloadditions of 204 with nitrile oxides (317,318). The 1,3-dipolar cycloadditions proceeded with concomitant loss of the boron group to give the isoxazoline products in up to 74% ee (318). The alkene 204 was also tested in reactions with nitrones. The reactions proceeded with poor yields, but high selectivities were observed in two cases (318). Gilbertson et al. (319) investigated the use of chiral ot,p-unsaturated hexacarbonyldiiron acyl complexes 205 as dipolarophiles in reactions with nitrones. Selectivities of up to >92% de were observed. The iron moiety was removed oxidatively after the cycloaddition and the thioester was hydrolyzed. [Pg.860]

The enantioselective inverse electron-demand 1,3-dipolar cycloadditions of nitrones with alkenes described so far are catalyzed by metal complexes that favor a monodentate coordination of the nitrone, such as boron and aluminium complexes. However, the glyoxylate-derived nitrone 256 favors abidentate coordination to the catalyst, and this nitrone is an interesting substrate, since the products that are obtained from the reaction with alkenes are masked ot-amino acids (Scheme 12.81). [Pg.877]

Christie and Jones first demonstrated in 2004 that appropriately substituted cyclopropanes adjacent to cobalt-alkyne complexes react with Lewis acids to yield 1,3-dipoles that are poised to participate in dipolar cycloadditions. Reaction of cyclopropane 21 with benzaldehyde and boron trifluoride provides tetrahydrofuran 22 in 83% yield. Kerr subsequently applied this strategy to the synthesis of tetrahydro-l,2-oxazines upon combination of cyclopranes like 21 with a variety of nitrones. ... [Pg.288]

Although most of the examples of [3S+2C] cycloaddition reactions with carbene complexes are referred to as 1,3-dipolar processes, we should include in this section another kind of non-dipolar transformation dealing with the reaction of pentacarbonyl(methoxymethylcarbene)chromium with a base followed by treatment with an epoxide in the presence of boron trifluoride. This reaction gives cyclic carbene complexes in a process that can be considered a [3S+2C] cycloaddition [44] (Scheme 14). [Pg.71]


See other pages where Boron complexes, 1,3-dipolar cycloadditions is mentioned: [Pg.867]    [Pg.713]    [Pg.33]    [Pg.309]    [Pg.241]   


SEARCH



Boron complexes

Cycloadditions complexes

© 2024 chempedia.info