Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bio catalyst Stability

As in all catalytic processes, catalyst stability is a key process criterion. In contrast to mere temperature or storage stability, which refer to the catalyst independently of a process, the operating stability or process stability is the relevant and decisive dimension of merit. It is determined by comparing the amount of product generated with the amount of catalyst spent. The relevant quantity, also sometimes found in homogeneous catalysis, is the total turnover number (TTN) [Eq. (2.25)]. [Pg.34]

Quite common in applied biocatalysis, where the purity of biocatalyst often is not known, is the expression of biocatalyst stability as an the enzyme consumption number (e.c.n.) [Eq. (2.26)]. [Pg.34]

value depends on process parameters such as temperature, pH value, and concentrations of substrate(s) and product(s). With the molar masses of enzyme and product, e.c.n. and TTN can be interconverted [Eq. (2.27)]. [Pg.35]

It should be emphasized that the TTN is not a completely suitable quantity for the evaluation of operating stability because the number of moles of biocatalyst is not a suitable reference for the complexity and cost of its manufacture. However, the values for both numerator and denominator in Eq. (2.27) are usually known and can be expressed in monetary terms. For checking the application of such a biocatalyst, the contribution of the biocatalyst to the overall cost can be assessed readily. [Pg.35]

The relevant parameter for studies of operating stability of enzymes is the product of active enzyme concentration [E]active and residence time T, [E]active T. In a continuously stirred tank reactor (CSTR) the quantities [E]active and T are linked by Eq. (2.28), where [S0] denotes the initial substrate concentration, x the degree of conversion and r(x) the conversion-dependent reaction rate (Wandrey, 1977 Bommarius, 1992). [Pg.35]


Every (bio)catalyst can be characterized by the three basic dimensions of merit -activity, selectivity and stability - as characterized by turnover frequency (tof) (= l/kcat), enantiomeric ratio (E value) or purity (e.e.), and melting point (Tm) or deactivation rate constant (kd). The dimensions of merit important for determining, evaluating, or optimizing a process are (i) product yield, (ii) (bio)catalyst productivity, (iii) (bio)catalyst stability, and (iv) reactor productivity. The pertinent quantities are turnover number (TON) (= [S]/[E]) for (ii), total turnover number (TTN) (= mole product/mole catalyst) for (iii) and space-time yield [kg (L d) 11 for iv). Threshold values for good biocatalyst performance are kcat > 1 s 1, E > 100 or e.e. > 99%, TTN > 104-105, and s.t.y. > 0.1 kg (L d). ... [Pg.20]

In evaluating a biocatalyst for a given processing task, there are performance criteria to be met not only for the biocatalyst but also for the process. The dimensions of merit important when determining, evaluating, or optimizing a route for a process are (i) product yield-, (ii) (bio)catalyst productivity, (iii) (bio)catalyst stability, and (iv) reactor productivity. [Pg.33]


See other pages where Bio catalyst Stability is mentioned: [Pg.9]    [Pg.34]   


SEARCH



Catalyst stability

Catalysts stabilization

Stability catalyst stabilization

Stabilizer, catalyst

© 2024 chempedia.info