Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mayo—Lewis binary copolymerization

A general method has been developed for the estimation of model parameters from experimental observations when the model relating the parameters and input variables to the output responses is a Monte Carlo simulation. The method provides point estimates as well as joint probability regions of the parameters. In comparison to methods based on analytical models, this approach can prove to be more flexible and gives the investigator a more quantitative insight into the effects of parameter values on the model. The parameter estimation technique has been applied to three examples in polymer science, all of which concern sequence distributions in polymer chains. The first is the estimation of binary reactivity ratios for the terminal or Mayo-Lewis copolymerization model from both composition and sequence distribution data. Next a procedure for discriminating between the penultimate and the terminal copolymerization models on the basis of sequence distribution data is described. Finally, the estimation of a parameter required to model the epimerization of isotactic polystyrene is discussed. [Pg.282]

Mayo-Lewis Binary Copolymeriration Model. In this exeimple we consider the Mayo-Lewis model for describing binary copolymerization. The procedure for estimating the kinetic parameters expressed as reactivity ratios from composition data is discussed in detail in our earlier paper (1 ). Here diad fractions, which are the relative numbers of MjMj, MiMj, M Mj and MjMj sequences as measured by NMR are used. NMR, while extremely useful, cannot distinguish between MiM and M Mi sequences and... [Pg.283]

Thus, through the body of the mentioned experimental evidence obtained via different methods that characterize the composition and structure of macromolecules one arrives at a simple conclusion concerning the kinetic model of the binary copolymerization of styrene with methyl methacrylate (I) and with acrylonitrile (II). The former of these systems is obviously described by the terminal model, and the latter one by the penultimate model. However, the latter system characteristics in those cases when high accuracy of the results is not required, may be calculated within the framework of the Mayo-Lewis model. Such a simplified approach was found to be quite acceptable to solve many practical problems. One should note that the trivial terminal model is able to describe a vast majority (at least, 90% according to Harwood [303]) of copolymerization systems which have been already studied. [Pg.74]

Copolymer composition can be predicted for copolymerizations with two or more components, such as those employing acrylonitrile plus a neutral monomer and an ionic dye receptor. These equations are derived by assuming that the component reactions involve only the terminal monomer unit of the chain radical. This leads to a collection of N x N component reactions and x 1) binary reactivity ratios, where N is the number of components used. The equation for copolymer composition for a specific monomer composition was derived by Mayo and Lewis [74], using the set of binary reactions, rate constants, and reactivity ratios described in Equation 12.13 through Equation 12.18. The drift in monomer composition, for bicomponent systems was described by Skeist [75] and Meyer and coworkers [76,77]. The theory of multicomponent polymerization kinetics has been treated by Ham [78] and Valvassori and Sartori [79]. Comprehensive reviews of copolymerization kinetics have been published by Alfrey et al. [80] and Ham [81,82], while the more specific subject of acrylonitrile copolymerization has been reviewed by Peebles [83]. The general subject of the reactivity of polymer radicals has been treated in depth by Jenkins and Ledwith [84]. [Pg.833]


See other pages where Mayo—Lewis binary copolymerization is mentioned: [Pg.190]    [Pg.88]    [Pg.200]    [Pg.108]   


SEARCH



Copolymerization binary

Mayo-Lewis

© 2024 chempedia.info