Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bifurcation of periodic orbits

Putting it all together, we arrive at the stability diagram shown in Figure 8.5.10. Three types of bifurcations occur homoclinic and infinite-period bifurcations of periodic orbits, and a saddle-node bifurcation of fixed points. [Pg.272]

Fig. 11.1 Two-dimensional bifurcation diagram calculated by continuation from the Citri-Epstein mechanism for the chlorite-iodide system. Plot of 2D space of constraints is chosen to be the ratio of input concentrations, [CIO ]o/[I ]o> versus the logarithm of the reciprocal resideuce time, logfco-Notation SSI, SS2, region of steady states with high [1 ] and low [I ], respectively Osc, region of periodic oscillations Exc, region of excitahihty snl, sn2, curves of saddle-node bifurcations of steady states hp, curve of Hopf bifiucatious sup, ciuve of saddle-node bifurcations of periodic orbits swt, swallow tail (a small area of tristability) C, cusp point TB, Takens-Bogdanov point (terminus of hp on snl). (From [5].)... Fig. 11.1 Two-dimensional bifurcation diagram calculated by continuation from the Citri-Epstein mechanism for the chlorite-iodide system. Plot of 2D space of constraints is chosen to be the ratio of input concentrations, [CIO ]o/[I ]o> versus the logarithm of the reciprocal resideuce time, logfco-Notation SSI, SS2, region of steady states with high [1 ] and low [I ], respectively Osc, region of periodic oscillations Exc, region of excitahihty snl, sn2, curves of saddle-node bifurcations of steady states hp, curve of Hopf bifiucatious sup, ciuve of saddle-node bifurcations of periodic orbits swt, swallow tail (a small area of tristability) C, cusp point TB, Takens-Bogdanov point (terminus of hp on snl). (From [5].)...
A straightforward generalization of two-dimensional bifurcations was developed soon after. So were some natural modifications such as, for instance, the bifurcation of a two-dimensional invariant torus from a periodic orbit. Also it became evident that the bifurcation of a homoclinic loop in high-dimensional space does not always lead to the birth of only a periodic orbit. A question which remained open for a long time was could there be other codimension-one bifurcations of periodic orbits Only one new bifurcation has so far been discovered recently in connection with the so-called blue-sky catastrophe as found in [152]. All these high-dimensional bifurcations are presented in detail in Part II of this book. [Pg.10]

The bifurcations of periodic orbits from a homoclinic loop of a multidimensional saddle equilibrium state are considered in Sec. 13.4. First, the conditions for the birth of a stable periodic orbit are found. These conditions stipulate that the unstable manifold of the equilibrium state must be one-dimensional and the saddle value must be negative. In fact, the precise theorem (Theorem 13.6) is a direct generalization of the Andronov-Leontovich theorem to the multi-dimensional case. We emphasize again that in comparison with the original proof due to Shilnikov [130], our proof here requires only the -smoothness of the vector field. [Pg.16]

In this book, we concentrate on an in-depth study of equilibrium points and periodic motions because they are the fimdamental bricks of nonlinear dynamics. For a complete coverage of two-dimensional systems, the reader is referred to the two-volume book by Andronov et al. [11, 12]. There, the classification of key bifurcations of periodic orbits by Andronov and Leontovich is based on their theory of two-dimensional systems of a first-degree of nonroughness. [Pg.62]

Fig. 11.3.7. Scenario of a saddle-node bifurcation of periodic orbits in The stable periodic orbit and the saddle periodic orbit in (a) coalesce at /i = 0 in (b) into a saddle-node periodic orbit, and then vanishes in (c). The unstable manifold of the saddle-node orbit in (c) is homeomorphic to a semi-cylinder. A trajectory following the path in (b) slows down along a transverse direction near the virtual saddle-node periodic orbit (i.e., the ghost of the saddle-node orbit in (b)) so that its local segment is similar to a compressed spring. Fig. 11.3.7. Scenario of a saddle-node bifurcation of periodic orbits in The stable periodic orbit and the saddle periodic orbit in (a) coalesce at /i = 0 in (b) into a saddle-node periodic orbit, and then vanishes in (c). The unstable manifold of the saddle-node orbit in (c) is homeomorphic to a semi-cylinder. A trajectory following the path in (b) slows down along a transverse direction near the virtual saddle-node periodic orbit (i.e., the ghost of the saddle-node orbit in (b)) so that its local segment is similar to a compressed spring.
Fig. 14.2.8. A saddle-node (fold) bifurcation of periodic orbits in... Fig. 14.2.8. A saddle-node (fold) bifurcation of periodic orbits in...
Thus, in a neighborhood of the homoclinic loop to the saddle-focus with < 1, there may exist structurally unstable periodic orbits, in particular saddle-nodes. This gives rise to the question does the saddle-node bifurcations of periodic orbits result in the appearance of stable ones ... [Pg.543]


See other pages where Bifurcation of periodic orbits is mentioned: [Pg.521]    [Pg.282]    [Pg.191]    [Pg.191]    [Pg.193]    [Pg.195]    [Pg.197]    [Pg.199]    [Pg.201]    [Pg.203]    [Pg.205]    [Pg.207]    [Pg.210]    [Pg.211]    [Pg.213]    [Pg.215]    [Pg.217]    [Pg.219]    [Pg.221]    [Pg.223]    [Pg.225]    [Pg.227]    [Pg.229]    [Pg.542]   
See also in sourсe #XX -- [ Pg.260 ]




SEARCH



Bifurcate

Bifurcated

Orbital period

Period-4 orbit

Periodic orbits

Periodic orbits bifurcating

© 2024 chempedia.info