Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bicontinuous phases phase prisms

Figure 3.28 Illustrative section from the phase prism of a mixture of oil, water, and surfactant. This section is for constant surfactant concentration (T is temperature). The section shows a middle-phase microemulsion phase existing together with oil (upper) and water (lower) phases. The surfactant is partitioned among all of the phases. The cross-hatching shows how the microemulsion can be O/W (to the left), or W/O (to the right), or bicontinuous (centre). From Schwuger et al. [226]. Copyright 1995, American Chemical Society. Figure 3.28 Illustrative section from the phase prism of a mixture of oil, water, and surfactant. This section is for constant surfactant concentration (T is temperature). The section shows a middle-phase microemulsion phase existing together with oil (upper) and water (lower) phases. The surfactant is partitioned among all of the phases. The cross-hatching shows how the microemulsion can be O/W (to the left), or W/O (to the right), or bicontinuous (centre). From Schwuger et al. [226]. Copyright 1995, American Chemical Society.
Figure 1.4 T(7)-sections through the phase prism of the systems H20-n-octane-C6E2, C8E3, Q0E4 and C12E5 at an oil/(water + oil) volume fraction of = 0.5. In order to determine the respective X-point the phase boundaries are measured only for surfactant mass fractions 7 > 7. An increase of both the hydrophobic chain length / and the size of the hydrophilic head group j shifts the X-point to lower values of 7, i.e. the efficiency increases. Simultaneously the stability range of the bicontinuous one phase microemulsion shrinks dramatically due to the increased extension of the lamellar mesophase (La). (From Ref. [26], reprinted with permission of Elsevier.)... Figure 1.4 T(7)-sections through the phase prism of the systems H20-n-octane-C6E2, C8E3, Q0E4 and C12E5 at an oil/(water + oil) volume fraction of <f> = 0.5. In order to determine the respective X-point the phase boundaries are measured only for surfactant mass fractions 7 > 7. An increase of both the hydrophobic chain length / and the size of the hydrophilic head group j shifts the X-point to lower values of 7, i.e. the efficiency increases. Simultaneously the stability range of the bicontinuous one phase microemulsion shrinks dramatically due to the increased extension of the lamellar mesophase (La). (From Ref. [26], reprinted with permission of Elsevier.)...
Figure 5.13 Section of the phase prism at constant surfactant concentration. Different structures within the one-phase region are indicated by hatching. In the water-rich region, swollen micelles solubilise oil. In the oil-rich region, reverse micelles of nanometre size exist. Bicontinuous structures are found in the intermediate range. (From Ref. [45], reprinted with permission of Elsevier.)... Figure 5.13 Section of the phase prism at constant surfactant concentration. Different structures within the one-phase region are indicated by hatching. In the water-rich region, swollen micelles solubilise oil. In the oil-rich region, reverse micelles of nanometre size exist. Bicontinuous structures are found in the intermediate range. (From Ref. [45], reprinted with permission of Elsevier.)...

See other pages where Bicontinuous phases phase prisms is mentioned: [Pg.39]    [Pg.40]    [Pg.96]    [Pg.22]    [Pg.312]    [Pg.26]    [Pg.39]    [Pg.96]    [Pg.61]   
See also in sourсe #XX -- [ Pg.2 , Pg.340 , Pg.341 ]

See also in sourсe #XX -- [ Pg.2 , Pg.340 , Pg.341 ]




SEARCH



BICONTINUOUS

Phase bicontinuous

Phase prism

© 2024 chempedia.info