Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Berkelium electronic configuration

BERKELIUM. [CAS 7440-40-6]. Chemical element, symbol Bk, at. no. 97, at wt. 247 (mass number of the most stable isotope), radioactive metal of the Actinide series, also one of the Transuranium elements. All isotopes of berkelium are radioactive all must be produced synthetically. The element was discovered by G.T. Seaborg and associates at the Metallurgical Laboratory of the University of Chicago in 1949. At that time, the dement was produced by bombarding 241 Am with helium ions. 4i Bk is an alpha-emitter and may be obtained by alpha-bombardment of ,4Cm. 245Cm. or 246Ciu. Ollier nuclides include those of mass numbers 243—246 and 248-250. Probable electronic configuration ... [Pg.194]

The ground-state electronic configurations (levels) of neutral and singly ionized berkelium were identified as 5f 7s2 (6H15/2) and Sf s1 (7H8), respectively (82). A nuclear magnetic dipole moment of 1.5 nuclear magnetons (61) and a quadrupole moment of 4.7 barns (83) were determined for 249Bk, based on analysis of the hyperfine structure in the berkelium emission spectrum. [Pg.35]

Berkelium exhibits both the III and IV oxidation states, as would be expected from the oxidation states displayed by its lanthanide counterpart, terbium. Bk(III) is the most stable oxidation state in noncomplex-ing aqueous solution. Bk(IV) is reasonably stable in solution, undoubtedly because of the stabilizing influence of the half-filled Sf7 electronic configuration. Bk(III) and Bk(IV) exist in aqueous solution as the simple hydrated ions Bk3+(aq) and Bk4+(aq), respectively, unless com-plexed by ligands. Bk(III) is green in most mineral acid solutions. Bk(IV) is yellow in HC1 solution and is orange-yellow in H2S04 solution. A discussion of the absorption spectra of berkelium ions in solution can be found in Section IV,C. [Pg.55]

Hum have mass numbers that range from 240 to 251, and are all radioactive. The longest-lived isotope has a mass number of 247 and a half-life of 1,380 years. The ground state electronic configuration of the outer orbitals of berkelium is 5f 6cf7s. In compounds and in aqueous solution, berke-lium is present in oxidation states III (the more stable) and IV. [Pg.141]

Nobelium is a member of the actinide series of elements. The ground state electron configuration is assumed to be (Rn)5fl47s2, by analogy with the equivalent lanthanide element ytterbium ([Kr]4fl46s2) there has never been enough nobelium made to experimentally verify the electronic configuration. Unlike the other actinide elements and the lanthanide elements, nobelium is most stable in solution as the dipositive cation No ". Consequently its chemistry resembles that of the much less chemically stable dipositive lanthanide cations or the common chemistry of the alkaline earth elements. When oxidized to No, nobelium follows the well-estabhshed chemistry of the stable, tripositive rare earth elements and of the other tripositive actinide elements (e.g., americium and curium), see also Actinium Berkelium Einsteinium Fermium Lawrencium Mendele-vium Neptunium Plutonium Protactinium Ruthereordium Thorium Uranium. [Pg.854]

The following elements also have the same electronic configuration as actinium (i.e. 5s 5pl) in their outer-most electronic orbitals, while the inner 4d orbitals are being filled, on going from element to element. Neptunium, Plutonium, Americium, Curium, Berkelium... [Pg.105]

The electronic configurations 5f or 4f representing the half-filled f shells of curium and gadolinium, have special stability. Thus, tripositive curium and gadolinium, are especially stable. A consequence of this is that the next element in each case readily loses an extra electron through oxidation, so as to obtain the f structure, with the result that terbium and especially berkelium can be readily oxidized from the III to the IV oxidation state. Another manifestation of this is that europium (and to a lesser extent samarium) -just before gadolinium - tends to favor the 4f structure with a more stable than usual II oxidation state. Similarly, the stable f electronic configuration leads to a more stable than usual II oxidation state in ytterbium (and to a lesser extent in thuUum) just before lutetium (whose tripositive ion has the 4f structure). This leads to the prediction that element 102, the next to the last actinide element, will have an observable II oxidation state. [Pg.18]

A phenomenological model based on crystal structure, metallic radius, melting point, and enthalpy of sublimation has been used to arrive at the electronic configuration of berkelium metal [140]. An energy difference of 0.92 eV was calculated between the 5f 7s ground state and the 5f 6d 7s first excited state. The enthalpy of sublimation of trivalent Bk metal was calculated to be 2.99 eV (288 kJmol ), reflecting the fact that berkelium metal is more volatile than curium metal. It was also concluded that the metallic valence of the face-centered cubic form of berkelium metal is less than that of the double hexagonal close-packed modification [140]. [Pg.128]

A simplistic picture of the situation is to have a relationship between the efifective moments of the f-element materials with the probable ion configuration. In this situation, localized f electrons in the metal would have the same moment as localized f electrons in a compound. The moment would depend on the number of such localized electrons regardless of the particular f-element s chemical form. Thus, the number of localized f electrons in Gd metal is seven (4f with three electrons in a ds conduction band), as it is in Cm metal (Sfconfiguration) there are also seven localized f electrons in both gadolinium and curium sesquioxides. Further, terbium and berkelium dioxides have seven localized f electrons. All six materials should have the same moment based on seven, unpaired free-ion electrons. [Pg.495]


See other pages where Berkelium electronic configuration is mentioned: [Pg.217]    [Pg.95]    [Pg.34]    [Pg.87]    [Pg.30]    [Pg.34]    [Pg.46]    [Pg.46]    [Pg.217]    [Pg.217]    [Pg.186]    [Pg.411]    [Pg.464]    [Pg.967]    [Pg.1059]    [Pg.158]    [Pg.34]    [Pg.4]    [Pg.269]    [Pg.4]    [Pg.121]    [Pg.259]    [Pg.35]    [Pg.217]    [Pg.217]    [Pg.264]   
See also in sourсe #XX -- [ Pg.408 ]




SEARCH



Berkelium

© 2024 chempedia.info