Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Basis sets full multiple spawning

Figure 20. The (So —> S2) absorption spectrum of pyrazine for reduced three- and four-dimensional models (left and middle panels) and for a complete 24-vibrational model (right panel). For the three- and four-dimensional models, the exact quantum mechanical results (full line) are obtained using the Fourier method [43,45]. For the 24-dimensional model (nearly converged), quantum mechanical results are obtained using version 8 of the MCTDH program [210]. For all three models, the calculations are done in the diabatic representation. In the multiple spawning calculations (dashed lines) the spawning threshold 0,o) is set to 0.05, the initial size of the basis set for the three-, four-, and 24-dimensional models is 20, 40, and 60, and the total number of basis functions is limited to 900 (i.e., regardless of the magnitude of the effective nonadiabatic coupling, we do not spawn new basis functions once the total number of basis functions reaches 900). Figure 20. The (So —> S2) absorption spectrum of pyrazine for reduced three- and four-dimensional models (left and middle panels) and for a complete 24-vibrational model (right panel). For the three- and four-dimensional models, the exact quantum mechanical results (full line) are obtained using the Fourier method [43,45]. For the 24-dimensional model (nearly converged), quantum mechanical results are obtained using version 8 of the MCTDH program [210]. For all three models, the calculations are done in the diabatic representation. In the multiple spawning calculations (dashed lines) the spawning threshold 0,o) is set to 0.05, the initial size of the basis set for the three-, four-, and 24-dimensional models is 20, 40, and 60, and the total number of basis functions is limited to 900 (i.e., regardless of the magnitude of the effective nonadiabatic coupling, we do not spawn new basis functions once the total number of basis functions reaches 900).
Figure 21. The (So — S2) absorption spectrum of pyrazine for the reduced three-dimensional model using different spawning thresholds. Full line Exact quantum mechanical results. Dashed line Multiple spawning results for — 2.5, 5.0, 10, and 20. (All other computational details are as in Fig. 20.) As the spawning threshold is increased, the number of spawned basis functions decreases, the numerical effort decreases, and the accuracy of the result deteriorates (slowly). In this case, the final size of the basis set (at t — 0.5 ps) varies from 860 for 0 = 2.5 to 285 for 0 = 20. Figure 21. The (So — S2) absorption spectrum of pyrazine for the reduced three-dimensional model using different spawning thresholds. Full line Exact quantum mechanical results. Dashed line Multiple spawning results for — 2.5, 5.0, 10, and 20. (All other computational details are as in Fig. 20.) As the spawning threshold is increased, the number of spawned basis functions decreases, the numerical effort decreases, and the accuracy of the result deteriorates (slowly). In this case, the final size of the basis set (at t — 0.5 ps) varies from 860 for 0 = 2.5 to 285 for 0 = 20.
Figure 19. Diabatic reaction probability as a function of time (in femtoseconds) for the collinear A - - BC AB + C model of Fig. 1, at an excess energy of 0.109 eV. In both panels, the full line designates the exact quantum mechanical results and the dashed lines are multiple spawning results with different initial conditions. Right panel TDB using an initial basis set with 30 basis functions and 10 seeds. Left panel Regular basis set using an initial basis set with 10 basis functions. (Figure adapted from Ref. 41.)... Figure 19. Diabatic reaction probability as a function of time (in femtoseconds) for the collinear A - - BC AB + C model of Fig. 1, at an excess energy of 0.109 eV. In both panels, the full line designates the exact quantum mechanical results and the dashed lines are multiple spawning results with different initial conditions. Right panel TDB using an initial basis set with 30 basis functions and 10 seeds. Left panel Regular basis set using an initial basis set with 10 basis functions. (Figure adapted from Ref. 41.)...

See other pages where Basis sets full multiple spawning is mentioned: [Pg.497]    [Pg.59]    [Pg.295]    [Pg.427]    [Pg.458]    [Pg.427]    [Pg.337]    [Pg.445]    [Pg.497]    [Pg.498]    [Pg.7]    [Pg.59]   
See also in sourсe #XX -- [ Pg.459 , Pg.460 , Pg.461 , Pg.462 , Pg.463 ]




SEARCH



Basis sets spawning

Full multiple spawning

Spawn

Spawning

© 2024 chempedia.info