Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Basicity polar reactions

The chemistry of amines ts dominated by the lone pair of electrons on nitrogen, which makes amines both basic and nucleophilic. They react with acids to form acid-base salts, and they react with electrophiles in many of the polar reactions seen in past chapters. Note in the following electrostatic potential map of trimethylamine how the negative (red) region corresponds to the lone-pair of electrons on nitrogen. [Pg.921]

Fig. 8-43. Anodic and cathodic polarization curves observed for a redox electron transfer at metallic tin electrodes covered with an anodic oxide Sn02 film of various thicknesses d in a basic solution reaction is a redox electron transfer of 0.25 M Fe(CN)6 A).25 M Fe(CN)6 in 0.2 M borate buffer solution of pH 9.1 at 25°C. d = film thickness dj = 2 nm ... Fig. 8-43. Anodic and cathodic polarization curves observed for a redox electron transfer at metallic tin electrodes covered with an anodic oxide Sn02 film of various thicknesses d in a basic solution reaction is a redox electron transfer of 0.25 M Fe(CN)6 A).25 M Fe(CN)6 in 0.2 M borate buffer solution of pH 9.1 at 25°C. d = film thickness dj = 2 nm ...
The conversion of halides to alcohols is a typical SN1 or SN2 reaction in the polar reaction method, and generally the reactions require basic conditions. However, the conversion of halides to alcohols by the radical reaction method can be carried out under neutral conditions. The treatment of alkyl halides with Bu3SnH /AIBN in toluene under aerobic conditions (atmosphere) gives the corresponding alcohols, by means of the reaction of the alkyl radical with molecular oxygen, and the subsequent reduction of alkyl hydrogen peroxide (ROOH) with Bu3SnH (eq. 2.22) [52-57]. When 1802 is used instead of 1602 in... [Pg.48]

The selectivity of activated carbons for adsorption and catalysis is dependent upon their surface chemistry, as well as upon their pore size distribution. Normally, the adsorptive surface of activated carbons is approximately neutral, such that polar and ionic species are less readily adsorbed than organic molecules. For many applications it would be advantageous to be able to tailor the surface chemistry of activated carbons in order to improve their effectiveness. The approaches that have been taken to modify the type and distribution of surface functional groups have mostly involved the posttreatment of activated carbons or modification of the precursor composition, although the synthesis route and conditions can also be employed to control the properties of the end product. Posttreatment methods include heating in a controlled atmosphere and chemical reaction in the liquid or vapor phase. It has been shown that through appropriate chemical reaction, the surface can be rendered more acidic, basic, polar, or completely neutral [11]. However, chemical treatment can add considerably to the product cost. The chemical composition of the precursor also influences the surface chemistry and offers a potentially lower cost method for adjusting the properties of activated... [Pg.8]

Polar reactions proceed by the movement of pairs of electrons from areas of high electron density (nucleophiles) to areas of low electron density (electrophiles), or from filled orbitals to empty orbitals. Polar mechanisms are further divided into those that proceed under basic conditions and those that proceed under acidic conditions. [Pg.26]

In polar reactions, nucleophiles react with electrophiles. Furthermore, most polar reactions are carried out under either acidic or basic conditions. [Pg.27]

Identifying pericyclic reactions takes care. They may be executed under acidic, basic, or neutral conditions, just like polar reactions. Many reactions involve several polar steps as well as one pericyclic step. Also, sometimes it s quite difficult to figure out the relationship between the starting materials and the products because of the extensive changes in bonding patterns that often occur with pericyclic reactions. [Pg.41]

Classify each of the following reactions as polar, free-radical, pericyclic, or transition-metal-catalyzed or -mediated. For the polar reactions, determine whether the conditions are basic or acidic. [Pg.45]

Pericyclic reactions can proceed under acidic or basic conditions. For example, the oxy-Cope rearrangement is greatly accelerated under basic conditions, and the Diels-Alder reaction is greatly accelerated by Lewis acids. Often a series of polar reactions is used to synthesize an unstable intermediate, which then undergoes a pericyclic reaction to reveal the product. In other words, a good command of polar mechanisms (Chapters 2 and 3) is essential to understanding how to draw pericyclic mechanisms. [Pg.154]

In Chapters 2 through 6 you learned how to draw polar basic, polar acidic, peri-cyclic, free-radical, and transition-metal-mediated and -catalyzed mechanisms. The reactions in the following problems may proceed by any of these mechanisms. Before you solve each problem, then, you need to identify its mechanistic class. See Chapter 1 if you have forgotten how to do so. [Pg.334]


See other pages where Basicity polar reactions is mentioned: [Pg.251]    [Pg.706]    [Pg.52]    [Pg.571]    [Pg.170]    [Pg.167]    [Pg.571]    [Pg.36]    [Pg.50]    [Pg.52]    [Pg.54]    [Pg.56]    [Pg.58]    [Pg.60]    [Pg.62]    [Pg.64]    [Pg.66]    [Pg.68]    [Pg.70]    [Pg.72]    [Pg.74]    [Pg.76]    [Pg.78]    [Pg.80]    [Pg.82]    [Pg.84]    [Pg.86]    [Pg.88]    [Pg.90]    [Pg.92]    [Pg.94]    [Pg.96]    [Pg.98]    [Pg.100]    [Pg.102]    [Pg.104]   


SEARCH



Basic reactions

Polar reactions under basic conditions

Reaction polarity

© 2024 chempedia.info