Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Autoinhibition of Allylic Monomers

An especially interesting case of inhibition is the internal or autoinhibition of allylic monomers (CH2=CH—CH2Y). Allylic monomers such as allyl acetate polymerize at abnormally low rates with the unexpected dependence of the rate on the first power of the initiator concentration. Further, the degree of polymerization, which is independent of the polymerization rate, is very low—only 14 for allyl acetate. These effects are the consequence of degradative chain transfer (case 4 in Table 3-3). The propagating radical in such a polymerization is very reactive, while the allylic C—H (the C—H bond alpha to the double bond) in the monomer is quite weak—resulting in facile chain transfer to monomer [Pg.263]

The allylic radicals that are formed are too stable to initiate polymerization, and the kinetic chain also terminates when the transfer occurs. The allylic radicals undergo termination by reaction with each other or, more likely, with propagating radicals [Litt and Eirich, I960], Reaction 3-155 is equivalent to termination by an inhibitor, which is the monomer itself in this case. In this polymerization the propagation and termination reactions will have the same general kinetic expression with first-order dependencies on initiator and monomer concentrations, since the same reactants and stoichiometry are involved. The degree of polymerization is simply the ratio of the rate constants for propagation and termination and is independent of the initiator concentration. [Pg.264]

The low reactivity of a-olefins such as propylene or of 1,1-dialkyl olefins such as isobutylene toward radical polymerization is probably a consequence of degradative chain transfer with the allylic hydrogens. It should be pointed out, however, that other monomers such as methyl methacrylate and methacrylonitrile, which also contain allylic C—H bonds, do not undergo extensive degradative chain transfer. This is due to the lowered reactivity of the propagating radicals in these monomers. The ester and nitrile substituents stabilize the radicals and decrease their reactivity toward transfer. Simultaneously the reactivity of the monomer toward propagation is enhanced. These monomers, unlike the a-olefins and 1,1-dialkyl olefins, yield high polymers in radical polymerizations. [Pg.264]


See other pages where Autoinhibition of Allylic Monomers is mentioned: [Pg.263]   


SEARCH



Allyl monomers

Autoinhibition

© 2024 chempedia.info