Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric hydrogenation amines

The reductive amination of ketones can be carried out under hydrogen pressure in the presence of palladium catalysts. However, if enantiopure Q -aminoketones are used, partial racemization of the intermediate a-amino imine can occur, owing to the equilibration with the corresponding enam-ine [102]. Asymmetric hydrogenation of racemic 2-amidocyclohexanones 218 with Raney nickel in ethanol gave a mixture of cis and trans 1,2-diamino cyclohexane derivatives 219 in unequal amounts, presumably because the enamines are intermediates, but with excellent enantioselectivity. The two diastereomers were easily separated and converted to the mono-protected cis- and trans- 1,2-diaminocyclohexanes 220. The receptor 221 has been also synthesized by this route [103] (Scheme 33). [Pg.39]

Asymmetric transfer hydrogenation can be employed in the asymmetric hydrogenation of prochiral ketones with a ruthenium complex of bis(oxazolinylmethyl) amine ligand 110. Enantioselectivities are greater than 95%.643... [Pg.113]

As an extension of the asymmetric hydrogenation of prochiral ketones to enantiomerically enriched alcohols, the reduction of imines has been a topic of interest in obtaining chiral amines of high enantiomeric purity. Several entries to enantiomerically enriched amines based on the approaches outlined above are available. These asymmetric hydrogenations have proved to be more difficult than those for prochiral ketones, but nevertheless show good promise. [Pg.119]

The asymmetric hydrogenation of acyclic imines with the ansa-titanocene catalyst 102 gives the chiral amines in up to 92% ee.684,685 This same system applied to cyclic imines produces the chiral amines with >97% ee values.684,685 The mechanism of these reductions has been studied 686... [Pg.120]

In situ rhodium(I) complexes containing both triphenylphosphine and optically active amines are said to effect asymmetric hydrogenation of the amino acid precursors (265). [Pg.350]

Cyanoaminecobaltate(II) catalysts (/, p. 150) were initially studied in relation to the well-known activity of Co(CN)53 (/, p. 106). Use of such catalysts with optically active amines (1,2-propanediamine and N.N-dimethyl-1,2-propanediamine), thought to be bridged in complexes such as [(CN4)Co-amine-Co(CN4)]4 , led to asymmetric hydrogenation of atro-pate [Eq. (55)] to a 7% ee (309). [Pg.357]

Asymmetric hydrogenation of nitrones in an iridium catalyst system, prepared from [IrCl(cod)]2, (S)-BINAP, NBu 4 BH4, gives with high enantioselectivity the corresponding A-hydroxylamines which are important biologically active compounds and precursors of amines (480). Further reduction of hydroxylamines to secondary amines or imines can be realized upon treatment with Fe/AcOH (479), or anhydrous titanium trichloride in tetrahydrofuran (THF) at room temperature (481). [Pg.213]

In contrast to the success in the synthesis of optically active amino acids and related compounds, only limited success has been achieved in the asymmetric synthesis of chiral amines or related compounds. One breakthrough is the asymmetric hydrogenation of arylenamides with Rh catalysts containing... [Pg.349]

Preparation of enantiomerically pare secondary amines by catalytic asymmetric hydrogenation or hydrosilylation of imines is as important as the preparation of alcohols from ketones. However, asymmetric hydrogenation of prochiral ON double bonds has received relatively less attention despite the obvious preparative potential of this process.98... [Pg.373]

Since then, optically active a-aminophosphonates have been obtained by a variety of methods including resolution, asymmetric phosphite additions to imine double bonds and sugar-based nitrones, condensation of optically active ureas with phosphites and aldehydes, catalytic asymmetric hydrogenation, and 1,3-dipolar cycloadditions. These approaches have been discussed in a comprehensive review by Dhawan and Redmore.9 More recent protocols involve electrophilic amination of homochiral dioxane acetals,10 alkylation of homochiral imines derived from pinanone11 and ketopinic acid,12 and alkylation of homochiral, bicyclic phosphonamides.13... [Pg.14]

Given the importance of chiral amines to synthetic chemistry as well as other fields asymmetric hydrogenation of imines has attracted wide interest but limited success compared to C=C and C=0 bond reduction. The first asymmetric hydrogenation of imines was carried out in the seventies with mthenium- and rhodium-based catalysts, followed later by titanium and zirconium systems [82]. Buchwald found that... [Pg.69]

Chiral monodentate phosphites and phosphoramidites are also effective ligands for Rh-catalyzed asymmetric hydrogenation of enamide substrates. As seen in the structure of MonoPhos illustrated in Figure 1.2, combination of the mod-ihed BINOF backbone and the amine part gives a structural variety to this type of ligand. Combinatorial methods are effective for optimization of the chiral structures.Elucidation of the hydrogenation mechanism catalyzed by the MonoPhos-Rh complex is in progress." ... [Pg.9]

Aromatic Ketones The DIOP-Rh [116] and DBPP-Rh [117] complexes, in conjunction with a tertiary amine, have been employed in the asymmetric hydrogenation of acetophenone, albeit with moderate enantioselectivity (80 and 82% respectively Tab. 1.10). The asymmetric hydrogenation of aromatic ketones was significantly improved by using the Me-PennPhos-Rh complex, with which enantioselectivities of up to 96% ee were achieved [36]. Interestingly, the additives 2,6-lutidine and potassium bromide were again found to be crucial for optimum selectivity, although their specific role has not been determined. [Pg.22]

The paramount significance of chiral amines in pharmaceutical and agrochemical substances drives the development of efficient catalytic asymmetric methods for their formation. In contrast to the high enantioselectivities observed in asymmetric reduction of both alkenes and ketones, only limited success has been achieved in the enantiose-lective hydrogenation of imines [118]. Currently, there are few efficient chiral catalytic systems available for the asymmetric hydrogenation of imines. [Pg.23]

Kollner et al. (29) prepared a Josiphos derivative containing an amine functionality that was reacted with benzene-1,3,5-tricarboxylic acid trichloride (11) and adamantane-l,3,5,7-tetracarboxylic acid tetrachloride (12). The second generation of these two types of dendrimers (13 and 14) were synthesized convergently through esterification of benzene-1,3,5-tricarboxylic acid trichloride and adamantane-1,3,5,7-tetracarboxylic acid with a phenol bearing the Josiphos derivative in the 1,3 positions. The rhodium complexes of the dendrimers were used as chiral dendritic catalysts in the asymmetric hydrogenation of dimethyl itaconate in methanol (1 mol% catalyst, 1 bar H2 partial pressure). The enantioselectivities were only... [Pg.91]


See other pages where Asymmetric hydrogenation amines is mentioned: [Pg.123]    [Pg.246]    [Pg.270]    [Pg.76]    [Pg.252]    [Pg.260]    [Pg.347]    [Pg.173]    [Pg.196]    [Pg.539]    [Pg.753]    [Pg.93]    [Pg.9]    [Pg.53]    [Pg.56]    [Pg.61]    [Pg.701]    [Pg.919]    [Pg.1194]    [Pg.1504]    [Pg.501]    [Pg.502]    [Pg.99]    [Pg.11]    [Pg.13]    [Pg.13]    [Pg.16]    [Pg.25]    [Pg.4]    [Pg.197]    [Pg.669]    [Pg.411]    [Pg.23]    [Pg.151]   
See also in sourсe #XX -- [ Pg.357 , Pg.358 ]




SEARCH



Amination asymmetric

Aminations asymmetric

Asymmetric amines

Asymmetric hydrogenation chiral amine synthesis

© 2024 chempedia.info