Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Associative ligand substitution Stereochemistry

As already mentioned, complexes of chromium(iii), cobalt(iii), rhodium(iii) and iridium(iii) are particularly inert, with substitution reactions often taking many hours or days under relatively forcing conditions. The majority of kinetic studies on the reactions of transition-metal complexes have been performed on complexes of these metal ions. This is for two reasons. Firstly, the rates of reactions are comparable to those in organic chemistry, and the techniques which have been developed for the investigation of such reactions are readily available and appropriate. The time scales of minutes to days are compatible with relatively slow spectroscopic techniques. The second reason is associated with the kinetic inertness of the products. If the products are non-labile, valuable stereochemical information about the course of the substitution reaction may be obtained. Much is known about the stereochemistry of ligand substitution reactions of cobalt(iii) complexes, from which certain inferences about the nature of the intermediates or transition states involved may be drawn. This is also the case for substitution reactions of square-planar complexes of platinum(ii), where study has led to the development of rules to predict the stereochemical course of reactions at this centre. [Pg.187]

The transmetallation step (iii) is certainly the most enigmatic part of the catalytic cycle. Generally, it is assumed to be rate limiting, and several mechanisms are proposed depending on the solvent. An open transition state with inversion of the stereochemistry would arise with polar solvents which are able to stabilize the transient partial charges , whereas a cyclic transition state with retention of the stereochemistry would arise in less polar solvents. It should be noted that the nature of the ligands on the palladium may influence dramatically the kinetics of the transmetallation step. A 1000-fold rate enhancement was observed when replacing triphenylphosphine by tri(2-furyl)phosphine . However, the dissociative or associative nature of the substitution on the palladium is stiU under discussion . ... [Pg.1351]

The normal neutral pathway (22 24 25 27) was ruled out by conducting the reaction with monodentate phosphine BINAP ligand mimics (Scheme 12.5). The products obtained were of low enantiomeric excess relative to reactions employing BINAP. The direct cationic pathway (24-> 26) was also eliminated due to the fact that the opposite stereochemistry was obtained under cationic conditions with the addition of silver salts. The switch in stereoselectivity in the presence of silver salts, moreover, indicates that oxidative insertion is not the enantioselective step. j8-Hydride elimination was also discounted as the enantioselective step due to the influence of the double-bond geometry of the starting material on the enantioselectivity of the cyclization. The proposed enantioselective step is the formation of the cationic intermediate 26 by an associative displacement (24-> 28-> 26). In the case of square planar pafladium(n) complexes, substitution chemistry can occur through associative processes. Axial coordination of the alkene would form the pentacoordinate pafladium(II) complex 28. Reports of isolated and characterized pentacoordinate palladium(II) species provide support for this proposed intermediate. [Pg.437]


See other pages where Associative ligand substitution Stereochemistry is mentioned: [Pg.5591]    [Pg.128]    [Pg.224]    [Pg.128]    [Pg.122]    [Pg.63]    [Pg.214]    [Pg.26]    [Pg.1219]    [Pg.274]    [Pg.688]    [Pg.231]    [Pg.1351]    [Pg.223]    [Pg.55]    [Pg.191]    [Pg.5561]    [Pg.63]    [Pg.96]    [Pg.1284]    [Pg.224]    [Pg.387]    [Pg.250]   
See also in sourсe #XX -- [ Pg.187 , Pg.202 ]




SEARCH



Associative substitution

Associative substitutions stereochemistry

Ligand association

Ligand stereochemistry

Ligand substitution

Ligand substitution stereochemistry

Substitution stereochemistry

© 2024 chempedia.info