Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Arylhydrazone protonation

A large number of Brpnsted and Lewis acid catalysts have been employed in the Fischer indole synthesis. Only a few have been found to be sufficiently useful for general use. It is worth noting that some Fischer indolizations are unsuccessful simply due to the sensitivity of the reaction intermediates or products under acidic conditions. In many such cases the thermal indolization process may be of use if the reaction intermediates or products are thermally stable (vide infra). If the products (intermediates) are labile to either thermal or acidic conditions, the use of pyridine chloride in pyridine or biphasic conditions are employed. The general mechanism for the acid catalyzed reaction is believed to be facilitated by the equilibrium between the aryl-hydrazone 13 (R = FF or Lewis acid) and the ene-hydrazine tautomer 14, presumably stabilizing the latter intermediate 14 by either protonation or complex formation (i.e. Lewis acid) at the more basic nitrogen atom (i.e. the 2-nitrogen atom in the arylhydrazone) is important. [Pg.117]

It has been proposed that protonation or complex formation at the 2-nitrogen atom of 14 would enhance the polarization of the r,6 -7i system and facilitate the rearrangement leading to new C-C bond formation. The equilibrium between the arylhydrazone and its ene-hydrazine tautomer is continuously promoted to the right by the irreversible rearomatization in stage II of the process. The indolization of arylhydrazones on heating in the presence of (or absence of) solvent under non-catalytic conditions can be rationalized by the formation of the transient intermediate 14 (R = H). Under these thermal conditions, the equilibrium is continuously pushed to the right in favor of indole formation. Some commonly used catalysts in this process are summarized in Table 3.4.1. [Pg.118]

When arylhydrazones of aldehydes or ketones are treated with a catalyst, elimination of ammonia takes place and an indole is formed, in the Fischer indole synthesis,Zinc chloride is the catalyst most frequently employed, but dozens of others, including other metal halides, proton and Lewis acids, and certain transition metals have also been used. Microwave irradiation has been used to facilitate this reaction. Aniline derivatives react with a-diazoketones, in the presence of a... [Pg.1452]

Arylhydrazones of A -acylbenzimidazoles (441) react with perchloric acid to rearrange into 1,2,4-triazolium salts 443, which can be isolated when R = Ar = Ph (Scheme 70). The protonated cycloadduct 442 represents a key intermediate. A reverse process was also pointed out neutralization of the triazolium salt 443 (R = Ar =Ph) with aqueous sodium carbonate gives back the corresponding 441, likely via a preliminary heter-ocyclization into a neutral cycloadduct. When R is a COMe or COOEt the unisolated triazolium salts 443 transform into final products by a condensation between the amino group and COMe or COOEt (89H339). [Pg.136]

A thermally induced rearrangement of arylhydrazones of furoxan-3-carbonyl compounds into 2-aryl-5-[(hydroximino)arylmethyl]-2//-l,2,3-triazole 1-oxides has been observed for the first time.156 2-(2,2-Dicyano-l-hydroxyethenyl)-l-methylpyrroles (192) are readily rearranged to their 3-isomers (193) in nearly quantitative yield when heated to 75-142 °C. The inter- or intra-molecular auto-protonation of a pyrrole ring... [Pg.499]

The Fischer indole synthesis. The Fischer acid-catalyzed conversion of an 7V-arylhydrazone 42 into an indole is one of the most powerful and versatile methods for the preparation of indoles . The mechanism involves a [3,3] sigmatropic Claisen-type rearrangement of a protonated enehydrazine tautomer 43 to give intermediate 44, which spontaneously cyclizes by loss of ammonia, probably via indoline 45, to an indole 46 (Scheme 27). For unsymmetrical ketones, two isomeric indoles are possible and the general result is that the indole derived from the more stable (usually the more highly substituted) enehydrazine is formed. [Pg.806]

Iactone. The observed low frequency is probably caused by hydrogen bonding of the lactone carbonyl with the imino proton of the hydrazone residue on C2, as shown by NMR spectroscopy. The same low frequency band also appeared in the spectra of the bis(arylhydrazones) of other analogues (42,46) such as the phenyl analogue of DHA [4-phenyl-butano-1,4-lactone 2,3-bis(phenylhydrazone)], which cannot form a 1,5-lactone. Finally, the lactone ring size was also deduced from its chemical reactions (24). [Pg.188]


See other pages where Arylhydrazone protonation is mentioned: [Pg.92]    [Pg.123]    [Pg.141]    [Pg.259]    [Pg.180]    [Pg.182]    [Pg.209]    [Pg.496]    [Pg.65]    [Pg.29]    [Pg.64]   
See also in sourсe #XX -- [ Pg.65 ]




SEARCH



Arylhydrazone

Arylhydrazones

© 2024 chempedia.info