Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Antiferroelectrics pyroelectric properties

Achiral smectic materials with anticUnic molecular packing are very rare [40] and their antiferroelectric properties have unequivocally been demonstrated only in 1996 [41]. The antiferroelectilc properties have been observed in mixtures of two achiral components, although no one of the two manifested this behaviour. In different mixtures of a rod like mesogenic compound (monomer) with the polymer comprised by chemically same rod-like mesogenic molecules a characteristic antiferroelectric hysteresis of the pyroelectric coefficient proportional to the spontaneous polarization value has been observed for an example see Fig. 13.27a. Upon application of a low voltage the response is linear, at a higher field a field-induced AF-F transition occurs. [Pg.425]

Figure 5. Response of polar dielectrics (containing local permanent dipoles) to an applied electric field from top to bottom paraelectric, ferroelectric, ferrielectric, antiferroelectric, and helielectric (helical anti-ferroelectric). A pyroelectric in the strict sense hardly responds to a field at all. A paraelectric, antiferro-electric, or helieletric phase shows normal, i.e., linear dielectric behavior and has only one stable, i.e., equilibrium, state for E=0. A ferroelectric as well as a ferrielectric (a subclass of ferroelectric) phase shows the peculiarity of two stable states. These states are polarized in opposite directions ( P) in the absence of an applied field ( =0). The property in a material of having two stable states is called bistability. A single substance may exhibit several of these phases, and temperature changes will provoke observable phase transitions between phases with different polar characteristics. Figure 5. Response of polar dielectrics (containing local permanent dipoles) to an applied electric field from top to bottom paraelectric, ferroelectric, ferrielectric, antiferroelectric, and helielectric (helical anti-ferroelectric). A pyroelectric in the strict sense hardly responds to a field at all. A paraelectric, antiferro-electric, or helieletric phase shows normal, i.e., linear dielectric behavior and has only one stable, i.e., equilibrium, state for E=0. A ferroelectric as well as a ferrielectric (a subclass of ferroelectric) phase shows the peculiarity of two stable states. These states are polarized in opposite directions ( P) in the absence of an applied field ( =0). The property in a material of having two stable states is called bistability. A single substance may exhibit several of these phases, and temperature changes will provoke observable phase transitions between phases with different polar characteristics.

See other pages where Antiferroelectrics pyroelectric properties is mentioned: [Pg.31]    [Pg.232]    [Pg.413]    [Pg.155]    [Pg.541]    [Pg.1544]    [Pg.379]   
See also in sourсe #XX -- [ Pg.903 ]




SEARCH



Antiferroelectricity

Pyroelectric properties

Pyroelectricity

Pyroelectrics

© 2024 chempedia.info