Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereogenic center formation anti-aldols

Note also the stereochemistry. In some cases, two new stereogenic centers are formed. The hydroxyl group and any C(2) substituent on the enolate can be in a syn or anti relationship. For many aldol addition reactions, the stereochemical outcome of the reaction can be predicted and analyzed on the basis of the detailed mechanism of the reaction. Entry 1 is a mixed ketone-aldehyde aldol addition carried out by kinetic formation of the less-substituted ketone enolate. Entries 2 to 4 are similar reactions but with more highly substituted reactants. Entries 5 and 6 involve boron enolates, which are discussed in Section 2.1.2.2. Entry 7 shows the formation of a boron enolate of an amide reactions of this type are considered in Section 2.1.3. Entries 8 to 10 show titanium, tin, and zirconium enolates and are discussed in Section 2.1.2.3. [Pg.67]

It is worthy of note that - similarly to the proline catalyzed aldol reaction - the Mannich reaction can also be extended to an enantio- and diastereoselective process in which two stereogenic centers are formed in one step, although using non-chiral starting materials (Scheme 5.16) [22, 23, 26, 27, 28]. In these reactions substituted acetone or acetaldehyde derivatives, rather than acetone, serve as donor. In contrast with the anti diastereoselectivity observed for the aldol reaction (Section 6.2.1.2), the proline-catalyzed Mannich reaction furnishes products with syn diastereoselectivity [23]. A proline-derived catalyst, which led to the formation of anti Mannich products has, however, been found by the Barbas group [29]. [Pg.100]

The basic principles of the mechanism of this Lewis-base-catalyzed aldol reaction have already been described in Section 6.2.1.1. With regard to the course of the enantio- and diastereoselective formation of aldol adducts with two stereogenic centers, it is proposed that synthesis of anti-products proceeds via a chair-like transition structure. A distinctive feature of the cationic transition state complex is a hexacoordinated silicon atom bearing two chiral phosphoramide molecules as ligands (Scheme 6.30). [Pg.158]


See other pages where Stereogenic center formation anti-aldols is mentioned: [Pg.50]    [Pg.465]    [Pg.38]    [Pg.56]    [Pg.64]    [Pg.450]    [Pg.320]    [Pg.111]   
See also in sourсe #XX -- [ Pg.92 , Pg.93 , Pg.94 , Pg.95 , Pg.96 , Pg.97 , Pg.98 , Pg.99 , Pg.100 ]




SEARCH



Aldol, anti

Stereogenic center

© 2024 chempedia.info