Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anisotropy, oriented polymer indentation

Since the increase of the elastic modulus of oriented polymers with draw ratio is, to a large extent, the consequence of the tie molecules or intercrystalline bridges interconnecting crystal blocks within the fibrils 72) one may anticipate a correlation to exist between indentation anisotropy and modulus. Recent data 23) illustrating the... [Pg.143]

The present review shows how the microhardness technique can be used to elucidate the dependence of a variety of local deformational processes upon polymer texture and morphology. Microhardness is a rather elusive quantity, that is really a combination of other mechanical properties. It is most suitably defined in terms of the pyramid indentation test. Hardness is primarily taken as a measure of the irreversible deformation mechanisms which characterize a polymeric material, though it also involves elastic and time dependent effects which depend on microstructural details. In isotropic lamellar polymers a hardness depression from ideal values, due to the finite crystal thickness, occurs. The interlamellar non-crystalline layer introduces an additional weak component which contributes further to a lowering of the hardness value. Annealing effects and chemical etching are shown to produce, on the contrary, a significant hardening of the material. The prevalent mechanisms for plastic deformation are proposed. Anisotropy behaviour for several oriented materials is critically discussed. [Pg.117]


See other pages where Anisotropy, oriented polymer indentation is mentioned: [Pg.120]    [Pg.3640]    [Pg.573]    [Pg.142]    [Pg.146]   


SEARCH



Indent

Indentation

Indentation anisotropy

Indenters

Indenting

Orientational anisotropy

© 2024 chempedia.info