Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aminolysis and Ammonolysis of Carboxylic Acids

The complex structure of the enzyme can show a very large substrate-enzyme interaction specificity, which can be traduced to a high degree of chemo-, regio-, or stereoselectivity. For this reason, nowadays, the versatility of biotransformations for synthetic proposals is an excellent tool for organic chemists [9]. [Pg.174]

Although, the enzymatic reaction of esters with amines or ammonia have been well documented, the corresponding aminolysis with carboxylic acids are rarer, because of the tendency of the reactants to form unreactive salts. For this reason some different strategies have been used to avoid this problem. Normally, this reaction has been used for the preparation of amides of industrial interest, for instance, one of the most important amides used in the polymer industry like oleamide has been produced by enzymatic amidation of oleic acid with ammonia and CALB in different organic solvents [10]. [Pg.174]

Alkanolamides from fatty acids are environmentally benign surfactants useful in a wide range of applications. It was found that most lipases catalyze both amidation and the esterification of alkanolamides however, normally the predominant final products are the corresponding amides, via amidation, and also by esterification and subsequent migration [15]. Recently, an interesting example for the production of novel hydroxyl-ated fatty amides in organic solvents has been carried out by Kuo et cd. [16]. [Pg.175]

Also the impact of various reaction parameters on enzymatic synthesis of amide surfactants from ethanolamine and diethanolamine has been studied, although the possibilities of acyl migration are not investigated. However, it was found that the selectivity of the reaction depended on the solubility of the product in the solvent used, and that the choice of solvent was critical to obtain an efficient process [17]. [Pg.175]


Classical reactions involving nucleophiles such as saponification ("OH as the nucleophile), aminolysis (with amines also ammonia in ammonolysis reactions), transesterification (alkoxides, "OR) and others (hydrazinolysis, hydroxamic acid synthesis, etc.) have been adapted to solid phane and used to obtain, for instance, carboxylic acids, amides and esters. Internal or intramolecular nucleophilic attack has been employed to obtain cyclic products such as lactones, lactams (including cyclic peptides) and a great variety of heterocycles (hydantoins, diketopiperazines, benzodiazepinones, etc.). [Pg.418]


See other pages where Aminolysis and Ammonolysis of Carboxylic Acids is mentioned: [Pg.171]    [Pg.172]    [Pg.174]    [Pg.174]    [Pg.175]    [Pg.176]    [Pg.178]    [Pg.180]    [Pg.182]    [Pg.184]    [Pg.186]    [Pg.188]    [Pg.190]    [Pg.171]    [Pg.172]    [Pg.174]    [Pg.174]    [Pg.175]    [Pg.176]    [Pg.178]    [Pg.180]    [Pg.182]    [Pg.184]    [Pg.186]    [Pg.188]    [Pg.190]    [Pg.176]    [Pg.172]    [Pg.171]    [Pg.693]   


SEARCH



AMINOLYSIS

Aminolysis acids

Ammonolysis

Ammonolysis and Aminolysis

Ammonolysis of

Carboxylates aminolysis

Carboxylic acids aminolysis

Carboxylic aminolysis

© 2024 chempedia.info