Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amines Morita-Baylis-Hillman-reaction

An interesting alternative intramolecular cyclisation was discovered by Jprgensen and co-workers [187]. Although not strictly exploiting an enamine intermediate, the transformation represents a secondary amine catalysed Morita-Baylis-Hillman reaction leading to a series of highly functionalised cyclohexene products. Reaction of the Nazarov reagent 137 with a,P-unsaturated aldehydes in the presence of the diarylprolinol ether 30 led to the cyclohexene products 138 (49-68% yield 86-96% ee) via a tandem Michael/Morita-Baylis-Hillman reaction (Scheme 54). [Pg.322]

P-Amino carbonyl compounds containing an a-atkyUdene group are densely functionalized materials, which are widely applied in the synthesis of medicinal reagents and natural products [265]. These products are usually prepared through the classic aza-Morita-Baylis-Hillman reaction [176, 177] of activated imines and electron-deficient alkenes catalyzed by tertiary amines or phosphines. Chen and co-workers, in 2008, identified bis-thiourea 106 as a suitable catalyst for the... [Pg.250]

A A /V /V -Tetramethylelhylcncdiaminc (TMEDA) as catalyst of the Morita-Baylis-Hillman reaction has been found to be more efficient than DABCO in aqueous media.146 1-Methylimidazole 3-/V-oxide promotes the Morita-Baylis-Hillman reaction of various activated aldehydes with ,/i-unsaturated ketones and esters CH2= CHCOR (R = Me, OMe) in solvent-free systems.147 In another study, the Morita-Baylis-Hillman reaction has been successfully performed under aqueous acidic conditions at pH 1, using a range of substrates and tertiary amines as catalysts.148... [Pg.316]

The vast majority of organocatalytic reactions proceeds via covalent formation of the catalyst-substrate adduct to form an activated complex. Amine-based reactions are typical examples, in which amino acids, peptides, alkaloids and synthetic nitrogen-containing molecules are used as chiral catalysts. The main body of reactions includes reactions of the so-called generalized enamine cycle and charge accelerated reactions via the formation of iminium intermediates (see Chapters 2 and 3). Also, Morita-Baylis-Hillman reactions (see Chapter 5), carbene-mediated reactions (see Chapter 9), as well as asymmetric ylide reactions including epoxidation, cyclopropanation, and aziridination (see Chapter 10), and oxidation with the in situ generation of chiral dioxirane or oxaziridine catalysts (see Chapter 12), are typical examples. [Pg.12]

Asymmetric organocatalytic Morita-Baylis-Hillman reactions offer synthetically viable alternatives to metal-complex-mediated reactions. The reaction is best mediated with a combination of nucleophilic tertiary amine/phosphine catalysts, and mild Bronsted acid co-catalysts usually, bifunctional chiral catalysts having both nucleophilic Lewis base and Bronsted acid site were seen to be the most efficient. Although many important factors governing the reactions were identified, our present understanding of the basic factors, and the control of reactivity and selectivity remains incomplete. Whilst substrate dependency is still considered to be an important issue, an increasing number of transformations are reaching the standards of current asymmetric reactions. [Pg.183]

The Morita-Baylis-Hillman reaction and its aza-variant - the reaction of an electron-deficient alkene with an aldehyde (MBH) or an imine (aza-MBH) - provide a convenient route to highly functionalized allylic alcohols and amines. This reaction is catalyzed by simple amines or phosphines, which can react as a Michael donor with an electron-deficient alkene, generating an enolate intermediate. This intermediate in turn undergoes the aldol or Mannich reaction with electrophilic C=0 or C=N bonds, respectively, to deliver allylic alcohols and amines. [Pg.221]

Chiral Amines Derived from Asymmetric Aza Morita Baylis Hillman Reaction... [Pg.398]

The Morita-Baylis-Hillman reaction is, in general, a carbon-carbon bondforming reaction of an a,(3-unsaturated compound with an aldehyde mediated by an organic nucleophilic base resulting in the formation of an allylic alcohol. Morita reported the use of a phosphine as catalyst and Baylis and Hillman used a tertiary amine. Variation of the electrophile to electron-deficient alkenes in a Michael-Michael elimination sequence leads to homo- and heterodimerisation and is known as the Rauhut-Currier reaction. The electrophilic aldehyde could be substituted by an imine or derivative in the aza-Morita-Baylis-Hillman reaction. Recently, there has been an increase in the use of this reaction for the construction of many different targets using many different amine derived catalysts. Scheme 2.2 shows a general view of this reaction and the accepted mechanism. ... [Pg.10]

In 2005, Wang and coworkers reported a new bifunctional binaphthyl-derived amine thiourea 16 as an efficient organocatalyst for the Morita-Baylis-Hillman reaction of cyclohexenone with aliphatic, aromatic and sterically hindered aldehydes. The design of the catalyst follows Takemoto s design of a bifunctional motif. This catalytic protocol provided access to useful chiral allylic alcohol building blocks in high yields and high enan-tioselectivities (Scheme 19.21). [Pg.209]

Another class of reaction for which chiral tertiary amines are privileged catalysts is the Morita-Baylis-Hillman type (477, 478). One of the first applications of Cinchona alkaloids to mediate an asymmetric Morita-Baylis-Hillman reaction in a natural product synthesis was reported by Hatakeyama et al. in 2001 (479). Using a stoichiometric amount of (3-isocupreidine (568), a stereoselective addition of hexafluoroisopropyl acrylate (569) to aldehyde 570 could be carried out in good yield and with excellent selectivity (99% ee) (Scheme 119). The chiral p-hydroxy ester 571 was converted further into the epoxide 572, a known intermediate in the synthesis of epopromycin B (573). Epopromycin B (573) is a plant cell wall... [Pg.119]

As an extension of this work, the same authors have used polystyrene-supported proline as a recyclable catalyst in the Morita-Baylis-Hillman reaction of a range of aryl aldehydes with methyl or ethyl vinyl ketone. These reactions were performed in the presence of imidazole and provided a series of Morita-Baylis-Hillman adducts in moderate to high yields (17 88%) combined with high enantioselectivities of up to 95% ee (Scheme 2.55). This study represented the first example of supported proline as heterogeneous catalyst for the Morita-Baylis-Hillman reaction. In addition, Zhou et al. reported that these reactions could be eatalysed by combinations of L-proline with chiral tertiary amines derived from various readily available chiral sources, such as L-proline or (5)-a-phenylethylamine. In these conditions, the Morita-Baylis-Hillman adducts were obtained in reasonable chemical yields (34-97%) and low to good enantioselectivities (12 83% ee). In this study, it was demonstrated that the proline stereochemistry was the sole factor to determine the eonfiguration of the newly formed chiral centre. [Pg.112]

Amino-a-methylene carbonyl compounds have been prepared in up to 92% ee via an aza-Morita-Baylis-Hillman reaction. A-Tosyl imines of, y-unsaturated a-ketoesters have been reacted with acrolein in the presence of two catalysts / -isocupridine (a chiral quinolol containing a DABCO moiety) and a bifunctional BINOL (or a 3 amine-thiourea). NMR and MS evidence supports a self-assembly of the catalysts, giving a multi-functional supramolecular catalyst. [Pg.11]

Recent advances in organocatalytic asymmetric Morita-Baylis-Hillman reactions and their aza-variants have been reviewed (112 references), with a particular focus on amine- and phosphine-catalysed routes, and bifunctional catalysis. 0... [Pg.29]

Several chalcogenide catalyzed MBH-type reactions are reported [146], Instead of the common ferf-amines or phosphanes, also higher organochalcogenides can act as nucleophilic activator. Such Morita-Baylis-Hillman reactions catalyzed by sub-stoichiometric amounts of sulfides and selenides in the presence of Lewis acid to activate the carbonyl group were described by Kataoka and co-workers [147, 148]. The reaction of p-nitrobenzaldehyde and 2-cyclohexenone has been used for screening a series of chalcogenide catalysts in dichloromethane at room temperature. The best result was found when 10 mol% of chalcogenide where employed with a stoichiometric amount of TiCl in the presence of excess 2-cyclohexenone as Michael acceptor (3 equiv., Table 7.10). [Pg.238]


See other pages where Amines Morita-Baylis-Hillman-reaction is mentioned: [Pg.517]    [Pg.275]    [Pg.9]    [Pg.269]    [Pg.712]    [Pg.1]    [Pg.53]    [Pg.414]    [Pg.111]    [Pg.172]    [Pg.69]    [Pg.330]    [Pg.899]    [Pg.330]    [Pg.899]    [Pg.77]   
See also in sourсe #XX -- [ Pg.183 ]




SEARCH



Baylis-Hillman

Baylis-Hillman reaction

Hillman

Morita

Morita Baylis Hillman

Morita-Baylis-Hillman reaction

© 2024 chempedia.info