Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amines, aromatic dehydrogenative couplings

The spectrum of applications of potassium permanganate is very broad. This reagent is used for dehydrogenative coupling [570], hydrox-ylates tertiary carbons to form hydroxy compounds [550,831], hydroxylates double bonds to form vicinal diols [707, 296, 555, 577], oxidizes alkenes to a-diketones [560, 567], cleaves double bonds to form carbonyl compounds [840, 842, 552] or carboxylic acids [765, 841, 843, 845, 852, 869, 872, 873, 874], and converts acetylenes into dicarbonyl compounds [848, 856, 864] or carboxylic acids [843, 864], Aromatic rings are degraded to carboxylic acids [575, 576], and side chains in aromatic compounds are oxidized to ketones [566, 577] or carboxylic acids [503, 878, 879, 880, 881, 882, 555]. Primary alcohols [884] and aldehydes [749, 868, 555] are converted into carboxylic acids, secondary alcohols into ketones [749, 839, 844, 863, 865, 886, 887], ketones into keto acids [555, 559, 590] or acids [559, 597], ethers into esters [555], and amines into amides [854, 555] or imines [557], Aromatic amines are oxidized to nitro compounds [755, 559, 592], aliphatic nitro compounds to ketones [562, 567], sulfides to sulfones [846], selenides to selenones [525], and iodo compounds to iodoso compounds [595]. [Pg.35]

Nickel peroxide, an undefined black oxide of nickel, is prepared from nickel sulfate hexahydrate by oxidation in alkaline medium with an ozone-oxygen mixture [929] or with sodium hypochlorite [930, 931, 932, 933]. Its main applications are the oxidation of aromatic side chains to carboxyls [933], of allylic and benzylic alcohols to aldehydes in organic solvents [929, 932] or to acids in aqueous alkaline solutions [929, 930, 932], and of aldehydes to acids [934, the conversion of aldehyde or ketone hydrazones into diazo compounds [935] the dehydrogenative coupling of ketones in the a positions with respect to carbonyl groups [931] and the dehydrogenation of primary amines to nitriles or azo compounds [936]. [Pg.37]

The polymerization of compounds having active methyne groups has also been reported [81] (Eq. 8). The oxidative coupling polymerization of these monomers follows a mechanism similar to that of phenols. The catalytic cycle observed in the polymerization of / -phcnylcncdiaminc with Fe(edta) as the catalyst in an aqueous solution differs from that in the polymerization of phenols as follows The activation of monomers usually involves either electron transfer from the anion or elimination of a hydrogen atom from the monomer. The oxidative polymerization of phenols uses the former mechanism of the electron transfer. In contrast, in the case of the polymerization of aromatic diamines as monomers, the neutral amines are coordinated to the catalyst, followed by the subsequent electron transfer and dehydronation. The dehydronation proceeds by the reaction with 02. Another mechanism has also been proposed where dehydrogenation... [Pg.545]

Tertiary amines have also been employed in electron transfer reactions with a variety of different acceptors, including enones, aromatic hydrocarbons, cyanoaro-matics, and stilbene derivatives. These reactions also provide convincing evidence for the intermediacy of aminoalkyl radicals. For example, the photoinduced electron transfer reactions of aromatic hydrocarbons, viz. naphthalene, with tertiary amines result in the reduction of the hydrocarbon as well as reductive coupling [183, 184]. Vinyl-dialkylamines can be envisaged as the complementary dehydrogenation products their formation was confirmed by CIDNP experiments [185]. [Pg.172]

Oxidations by oxygen and catalysts are used for the conversion of alkanes into alcohols, ketones, or acids [54]-, for the epoxidation of alkenes [43, for the formation of alkenyl hydroperoxides [22] for the conversion of terminal alkenes into methyl ketones [60, 65] for the coupling of terminal acetylenes [2, 59, 66] for the oxidation of aromatic compounds to quinones [3] or carboxylic acids [65] for the dehydrogenation of alcohols to aldehydes [4, 55, 56] or ketones [56, 57, 62, 70] for the conversion of alcohols [56, 69], aldehydes [5, 6, 63], and ketones [52, 67] into carboxylic acids and for the oxidation of primary amines to nitriles [64], of thiols to disulfides [9] or sulfonic acids [53], of sulfoxides to sulfones [70], and of alkyl dichloroboranes to alkyl hydroperoxides [57]. [Pg.4]

Diazo-compounds also result from the oxidative coupling of aromatic amines with bis-pyridinesilver permanganate, a new mild and selective oxidant, and from the two-phase dehydrogenation of hydrazo-compounds, utilising potassium hexacyanoferrate. °... [Pg.222]


See other pages where Amines, aromatic dehydrogenative couplings is mentioned: [Pg.97]    [Pg.225]    [Pg.46]    [Pg.280]    [Pg.76]    [Pg.55]    [Pg.55]    [Pg.58]    [Pg.60]    [Pg.121]    [Pg.141]    [Pg.322]    [Pg.124]    [Pg.11]    [Pg.302]    [Pg.48]    [Pg.333]    [Pg.45]    [Pg.336]    [Pg.101]   
See also in sourсe #XX -- [ Pg.53 ]




SEARCH



Amines coupling

Amines dehydrogenation

Aromatic amination

Aromatic amines

Aromatic coupling

Aromatic dehydrogenation

Aromatics amination

Dehydrogenations coupling

Dehydrogenative coupling

Dehydrogenative coupling aromatic

© 2024 chempedia.info