Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic compounds ambident electrophiles

Ambident anions are mesomeric, nucleophilic anions which have at least two reactive centers with a substantial fraction of the negative charge distributed over these cen-ters ) ). Such ambident anions are capable of forming two types of products in nucleophilic substitution reactions with electrophilic reactants . Examples of this kind of anion are the enolates of 1,3-dicarbonyl compounds, phenolate, cyanide, thiocyanide, and nitrite ions, the anions of nitro compounds, oximes, amides, the anions of heterocyclic aromatic compounds e.g. pyrrole, hydroxypyridines, hydroxypyrimidines) and others cf. Fig. 5-17. [Pg.269]

NH form e.g. 505). Most 4- and 5-hydroxy compounds of types (500) and (502) exist largely in these non-aromatic azolinone forms, although the hydroxyl form can be stabilized by chelation e.g. 506). The derived ambident anions react with electrophiles at O or C. Replacement of the hydroxyl group is sometimes possible provided electron-withdrawing groups are present as, for example, in 5-substituted 4-hydroxypyrazoles. [Pg.101]

Azlactone is commonly utilized as a precursor of a-quatemary a-amino acids and various heterocyclic compounds [28-30]. Because the enol form of azlactone has aromatic character, facile deprotonation from the C4-position affords the corresponding enolate under the influence of various bases. Interestingly, the enolate ion shows ambident reactivity and attacks the electrophile at either the C4-position (a-addition) or the C2-position (y-addition), thus acting as an a-amino enolate or an acyl anion equivalent, respectively (Fig. 1). The site-selectivity associated with this enolate seems to be heavily dependent on its stereoelectronic characteristics, and introduction of a bulky substituent into the Cl- or C4-position suppresses the nucleophilicity at the particular position. [Pg.65]


See other pages where Aromatic compounds ambident electrophiles is mentioned: [Pg.579]   


SEARCH



Ambident

Ambident electrophile

© 2024 chempedia.info