Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Algebraic equality constraints optimization

Models can be written in a variety of mathematical forms. Figure 2.3 shows a few of the possibilities, some of which were already illustrated in Section 2.1. This section focuses on the simplest case, namely models composed of algebraic equations, which constitute the bulk of the equality constraints in process optimization. Emphasis here is on estimating the coefficients in simple models and not on the complexity of the model. [Pg.48]

The model involves four variables and three independent nonlinear algebraic equations, hence one degree of freedom exists. The equality constraints can be manipulated using direct substitution to eliminate all variables except one, say the diameter, which would then represent the independent variables. The other three variables would be dependent. Of course, we could select the velocity as the single independent variable of any of the four variables. See Example 13.1 for use of this model in an optimization problem. [Pg.69]

In contrast to the sequential solution method, the simultaneous strategy solves the dynamic process model and the optimization problem at one step. This avoids solving the model equations at each iteration in the optimization algorithm as in the sequential approach. In this approach, the dynamic process model constraints in the optimal control problem are transformed to a set of algebraic equations which is treated as equality constraints in NLP problem [20], To apply the simultaneous strategy, both state and control variable profiles are discretized by approximating functions and treated as the decision variables in optimization algorithms. [Pg.105]

For the PDF model of the SMB process, full discretization was used, that is, both temporal and spatial variables were discretized leading to a huge system of algebraic equations. The standard SMB optimization problem has 33 997 decision variables and 33 992 equality constraints while the superstructure SMB optimization problem has 34 102 decision variables and 34 017 equality constraints. Note that there are many more degrees of freedom in the superstructure formulation (altogether 85) than in the standard SMB formulation (5 degrees of freedom). [Pg.174]

Algebraic optimization with equality and inequality constraints... [Pg.310]

In summary, condition 1 gives a set of n algebraic equations, and conditions 2 and 3 give a set of m constraint equations. The inequality constraints are converted to equalities using h slack variables. A total of M + m constraint equations are solved for n variables and m Lagrange multipliers that must satisfy the constraint qualification. Condition 4 determines the value of the h slack variables. This theorem gives an indirect problem in which a set of algebraic equations is solved for the optimum of a constrained optimization problem. [Pg.2443]

As mentioned earlier, the developed algorithm employs dynopt to solve the intermediate problems associated with the local interaction of the agents. Specifically, dynopt is a set of MATLAB functions that use the orthogonal collocation on finite elements method for the determination of optimal control trajectories. As inputs, this toolbox requires the dynamic process model, the objective function to be minimized, and the set of equality and inequality constraints. The dynamic model here is described by the set of ordinary differential equations and differential algebraic equations that represent the fermentation process model. For the purpose of optimization, the MATLAB Optimization Toolbox, particularly the constrained nonlinear rninimization routine fmincon [29], is employed. [Pg.122]


See other pages where Algebraic equality constraints optimization is mentioned: [Pg.199]    [Pg.618]    [Pg.337]    [Pg.141]    [Pg.83]   
See also in sourсe #XX -- [ Pg.365 ]




SEARCH



Algebraic Optimization

Algebraic constraints

Equal

Equaling

Equality

Equalization

Optimization constraints

Optimization equality constraints

© 2024 chempedia.info