Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluoride adsorption

Isotherms for H2O and / -hexane adsorption at room temperature and for O2 adsorption at Hquid oxygen temperature on 13X (NaX) zeoHte and on the crystalline Si02 molecular sieve siHcaHte are are shown in Figure 8 (43). SiHcaHte adsorbs water very weaMy. Further modification of siHcaHte by fluoride incorporation provides an extremely hydrophobic adsorbent, shown in Figure 9 (44). These examples illustrate the broad range of properties of crystalline molecular sieves. [Pg.276]

As a result of the development of electronic applications for NF, higher purities of NF have been required, and considerable work has been done to improve the existing manufacturing and purification processes (29). N2F2 is removed by pyrolysis over heated metal (30) or metal fluoride (31). This purification step is carried out at temperatures between 200—300°C which is below the temperature at which NF is converted to N2F4. Moisture, N2O, and CO2 are removed by adsorption on 2eohtes (29,32). The removal of CF from NF, a particularly difficult separation owing to the similar physical and chemical properties of these two compounds, has been described (33,34). [Pg.217]

Adsorption, which utilizes the ability of a solid adsorbent to adsorb specific components from a gaseous or a liquid solution onto its surface. Examples of adsorption include the use of granular activated carbon for the removal of ben-zene/toluene/xylene mixtures from underground water, the separation of ketones from aqueous wastes of an oil refinery, aad the recovery of organic solvents from the exhaust gases of polymer manufacturing facilities. Other examples include the use of activated alumina to adsorb fluorides and arsenic from metal-finishing emissions. [Pg.17]

The pzc of a pc-Cd renewed by cutting was determined in dilute fluoride and sulfate solutions by capacitance measurements.645,646 The C, E curves exhibited distinct minima whose depth increased with increasing dilution of the solution (Table 15). This value is ca. 30 mV more negative than that for polished electrodes and reflects the more disturbed surface stmcture of a renewed electrode. Adsorption of aliphatic alcohols and acids has also been studied on these electrodes.645,646... [Pg.104]

Because membrane filtration is the only currently acceptable method of sterilizing protein pharmaceuticals, the adsorption and inactivation of proteins on membranes is of particular concern during formulation development. Pitt [56] examined nonspecific protein binding of polymeric microporous membranes typically used in sterilization by membrane filtration. Nitrocellulose and nylon membranes had extremely high protein adsorption, followed by polysulfone, cellulose diacetate, and hydrophilic polyvinylidene fluoride membranes. In a subsequent study by Truskey et al. [46], protein conformational changes after filtration were observed by CD spectroscopy, particularly with nylon and polysulfone membrane filters. The conformational changes were related to the tendency of the membrane to adsorb the protein, although the precise mechanism was unclear. [Pg.703]

The quantity dyl3 In a2 at the potential of the electrocapillary maximum is of basic importance. As the surface charge of the electrode is here equal to zero, the electrostatic effect of the electrode on the ions ceases. Thus, if no specific ion adsorption occurs, this differential quotient is equal to zero and no surface excess of ions is formed at the electrode. This is especially true for ions of the alkali metals and alkaline earths and, of the anions, fluoride at low concentrations and hydroxide. Sulphate, nitrate and perchlorate ions are very weakly surface active. The remaining ions decrease the surface tension at the maximum on the electrocapillary curve to a greater or lesser degree. [Pg.222]

Hydrogen fluoride and inorganic fluorides in air (using an ion selective electrode). Toluene in air (pumped charcoal adsorption tubes, solvent desorption and gas chromatography). [Pg.378]

Adsorption of perchloryl fluoride on charcoal can, like liquid oxygen, produce a powerful Sprengel explosive. [Pg.1338]

At present, a wide range of solid substrates are available for protein immobilization. According to the protein attachment strategies, namely, adsorption, affinity binding, and covalent binding, all these substrates can be separated into three main parts. Surfaces like ploy(vinylidene fluoride) (PVDF), poly(dimethylsiloxane) (PDMS), nitrocellulose, polystyrene, and poly-1-lysine coated glass can adsorb proteins by electrostatic or hydrophobic forces. A potential drawback of such substrates is the difficulty... [Pg.360]

Let us now extend the long-period hydronium ice-like model for the IHP on Pt(lll) to explain the observations in electrolytes other than sulphate. In acid chloride, both the observations and the model carry-over directly from the case of sulphate. In fluoride, perchlorate, bicarbonate and hydroxide, in Which the anomalous features shift considerably in both potential and appearance (especially in the basic media) from sulphate, another model is needed. Both (bi)sulphate and chloride are large weakly hydrated anions, and in the double-layer model of Figures 4-5, they interact strongly with both the hydronium ions and the Pt surface. The contact adsorption... [Pg.50]

A sharp decrease in adsorption enthalpy between 10 and 30% surface coverage of SAL can also be seen in Figure 2. This decrease may indicate that only a small number of surface sites are favorably oriented for SAL-goethite bond formation, although possible SAL-SAL interactions on the surface may also have an effect. Separate measurements of SAL adsorption on goethite, gave relatively small adsorption maxima (when compared to the phosphate and fluoride adsorption maxima discussed above) of 22 and 11 pmol/g at pH 4.8 and 6.3, respectively, in either 0.001 M NaN0 or 0.001 M KC1 06). J... [Pg.148]

The observed disaepancies in experimental results is most likely caused by the ions of the supporting electrolyte. For example, fluoride ions do not adsorb on the mercury electrode but adsorb on the silver electrode. The adsorption on the latter metal strongly depends on the face orientation.The sequence of AG° values forn-hexanol adsorption from Na2S04 and KCIO4 solutions is AC° [Ag(lll)] > AG° [Ag(lOO)] (see Table 3). However, the sequence of AG°s of n-pentanol adsorption from KF solution is just the opposite [Ag(l 10)] > AG° [Ag(l ll)]. The... [Pg.50]


See other pages where Fluoride adsorption is mentioned: [Pg.193]    [Pg.193]    [Pg.446]    [Pg.388]    [Pg.157]    [Pg.162]    [Pg.104]    [Pg.113]    [Pg.822]    [Pg.781]    [Pg.644]    [Pg.174]    [Pg.94]    [Pg.173]    [Pg.158]    [Pg.170]    [Pg.280]    [Pg.14]    [Pg.258]    [Pg.259]    [Pg.62]    [Pg.245]    [Pg.670]    [Pg.42]    [Pg.51]    [Pg.55]    [Pg.501]    [Pg.229]    [Pg.172]    [Pg.148]    [Pg.148]    [Pg.369]    [Pg.182]    [Pg.115]    [Pg.11]    [Pg.48]   
See also in sourсe #XX -- [ Pg.60 , Pg.158 ]




SEARCH



© 2024 chempedia.info