Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal ion activity

Belouzov-Zhabotinsky reaction [12, 13] This chemical reaction is a classical example of non-equilibrium thermodynamics, forming a nonlinear chemical oscillator [14]. Redox-active metal ions with more than one stable oxidation state (e.g., cerium, ruthenium) are reduced by an organic acid (e.g., malonic acid) and re-oxidized by bromate forming temporal or spatial patterns of metal ion concentration in either oxidation state. This is a self-organized structure, because the reaction is not dominated by equilibrium thermodynamic behavior. The reaction is far from equilibrium and remains so for a significant length of time. Finally,... [Pg.188]

Much effort has been expanded in drawing mechanistic inferences from the observation that cofacial bismetalloporphyrins containing a non-redox-active metal ion are fairly selective catalysts (e.g., (DPA)CoM, where M = Lu, Sc, Al, Ag, Pd, 2H, i.e., monometallic porphyrins Fig. 18.15). At least two hypotheses have been proposed (i) polarization of the 0-0 bond in catalytic intermediates by the second ion (on an N-H moiety) acting as a Lewis acid [CoUman et al., 1987, 1994] and (ii) spatial positioning of H+ donors especially favorable for proton transfer to the terminal O atoms of coordinated O2 [Ni et al., 1987 Rosenthal and Nocera, 2007]. To the best of my knowledge, neither hypothesis has yet been convincingly proven nor resulted in improved ORR catalysts. When seeking stereoelectronic rational of the observed av values, it is useful to be mindful that a fair number of simple Co porphyrins are also relatively selective ORR catalysts (Section 18.4.2). [Pg.671]

Catalysis of supported metal ions is an area of interest. There are a number of advantages in depositing catalytically active metal ions on a support. The ion exchange method of catalyst immobilization is simple and the attractiveness of this method is further increased by providing stable inorganic ion exchangers of known structures as supports. [Pg.256]

Silver and mercury salts have a long history of use as antibacterial agents.241-243 The use of mercurochrome ((40), Figure 18) as a topical disinfectant is now discouraged. Silver sulfadiazene (38) finds use for treatment of severe burns the polymeric material slowly releases the antibacterial Ag+ ion. Silver nitrate is still used in many countries to prevent ophthalmic disease in newborn children.244 The mechanism of action of Ag and Hg is through slow release of the active metal ion—inhibition of thiol function in bacterial cell walls gives a rationale for the specificity of bacteriocidal action. [Pg.830]

Marking crayons and inks/paints are some of the oldest methods of applying identification to slabs of rubber whilst being stored prior to incorporation into products or during factory operations. Care must be taken to ensure that the materials used for such identification are compatible with the rubbers on which they are being used. Coloured markers can also contain pigments which may contain active metal ions which could conceivably cause activation of oxidative degradation of the rubber if used extensively. [Pg.193]

The metal ion in electroless solutions may be significantly complexed as discussed earlier. Not all of the metal ion species in solution will be active for electroless deposition, possibly only the uncomplexed, or aquo-ions hexaquo in the case of Ni2+, and perhaps the ML or M2L2 type complexes. Hence, the concentration of active metal ions may be much less than the overall concentration of metal ions. This raises the possibility that diffusion of metal ions active for the reduction reaction could be a significant factor in the electroless reaction in cases where the patterned elements undergoing deposition are smaller than the linear, or planar, diffusion layer thickness of these ions. In such instances, due to nonlinear diffusion, there is more efficient mass transport of metal ion to the smaller features than to large area (relative to the diffusion layer thickness) features. Thus, neglecting for the moment the opposite effects of additives and dissolved 02, the deposit thickness will tend to be greater on the smaller features, and deposit composition may be nonuniform in the case of alloy deposition. [Pg.262]

A cofactor is a nonprotein compound that combines with an inactive enzyme to generate a complex that is catalytically active. Metal ions are common cofactors for enzymatic processes. A cofactor may be consumed in the reaction, but may be regenerated by a second reaction unrelated to the enzymatic process. [Pg.262]

The nature of the ligand donor atom and the stereochemistry at the metal ion can have a profound effect on the redox potential of redox-active metal ions. The standard redox potentials of Cu2+/Cu+, Fe3+/Fe2+, Mn3+/Mn2+, Co3+/Co2+, can be altered by more than 1.0 V by varying such parameters. A simple example of this effect is provided by the couple Cu2+/Cu+. These two forms of copper have quite different coordination geometries, and ligand environments, which are distorted towards the Cu(I) geometry, will raise the redox potential, as we will see later in the case of the electron transfer protein plastocyanin. [Pg.19]

If one combines a catalytically active metal ion with a polymer via Scheme 2, a polymer to catalyze a reaction can be obtained. It is reasonable to assume that the metal catalyst bound to the polymer backbone will show a specific behavior compared with that of the corresponding monomeric complex, because the reactivities of thejneta] complex are.sometimes strongly... [Pg.147]

Enzymes that probably require three metal ions for full activity include the Tetrahymena group I ribozyme, a Mn " -activated bifimctional enzyme with inositol monophosphatase and fructose 1,6-bisphosphatase activities described belowand some endonucleases. " Inorganic pyrophosphatases from E. coli and S. cerevisiae are well characterized both structurally and mechanistically. Both Mg " " and Mn + are activating metal ions and the enzyme from E. coli is most active with just three metal ions in the active site. These enzymes have been described in Section 5.1.8.2.4. [Pg.108]

Metal hexacyanoferrates possessing only one kind of redox-active metal ions Most of the metal hexacyanoferrates show only... [Pg.712]

Metal hexacyanoferrates possessing two kinds of redox-active metal ions Here we consider those hexacyanoferrates that... [Pg.713]

NMR technique. NMR-active metal ions entrapped in the liposome can be differentiated from those outside by the addition of shift reagents such as Dy(III) or Gd(III) to the external phase. Then metal concentrations inside and outside the liposome can be determined directly. This is attractive for i and ions because of high sensitivities and natural abun-... [Pg.204]

In the most general situation, a redox-active metal ion is translocated from a given site to another site of the same molecular system, following a chemical (a redox reaction) or an electrochemical input. The redox-driven reversible translocation of a metal ion in a two-component molecular system is schematically sketched in Fig. 2.2. [Pg.36]

The studies on the methylation of dihydroxybenzaldehyde and the earlier studies on the decarboxylation of oxaloacetic acid illustrate a hypothesis about metal-catalyzed enzymes that is not proved but has been substantiated in a number of instances in which it has been tried. The hypothesis is that, if a metal constitutes the active site of an enzyme, it should be possible to carry out the reaction with metal ions alone in the absence of the enzyme. The rates of non-enzymatic reactions may be much lower, and the metal ions may be more active metal ions than those that activate the enzyme, for the reasons already discussed. This hypothesis is the basis for much of the work on metal catalytic reactions that are models for enzyme systems. [Pg.50]

Zeolites seem to be promising catalysts for the conversion of fine chemicals and organic intermediates [1-3]. Metallo-phthallocyanines encaged in zeolites Y have been proposed as enzyme mimics [4-7]. Zeolites can replace the protein portion of natural enzymes and modify the reactivity in the same way as enzymes do by imposing steric constraints on the environment of the active metal ion site. [Pg.395]

A great variety of aza macrocycle complexes have been formed by condensation reactions in the presence of a metal ion, often termed template reactions . The majority of such reactions have inline formation as the ring-closing step. Fourteen- and, to a lesser extent, sixteen-membered tetraaza macrocycles predominate, and nickel(II) and copper(II) are the most widely active metal ions. Only a selection of the more general types of reaction can be described here, and some closely related, but non metal-ion-promoted, reactions will be included for convenience. The reactions are classified according to the nature of the carbonyl and amine reactants. [Pg.900]

Moreover, under certain conditions these phenolic compounds could also act as pro-oxidants. In the presence of redox-active metal ions such as Cu or Fe, phenolic compounds react with O2 to generate phenoxyl radicals. Under normal growth conditions phenoxyl radicals can be rapidly deactivated by polymerization or enzymatic reduction. However, if the phenoxyl radical concentrations are too high and/or the lifetime is increased, they could initiate DNA damage or lipid peroxidation and exhibit cytotoxicities. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin have been reported to induce... [Pg.405]

Evidence is now accumulating to show that reactions involving metals might be the common denominator underlying AD and PD. In these disorders, an abnormal reaction between a protein and a redox-active metal ion (copper or iron) promotes the formation of ROS. It is especially intriguing how the antioxidant Cu/Zn-SOD activity can convert into a pro-oxidant activity, a theme echoed in the recent proposal that Ap and PrP, the proteins respectively involved in AD and prion diseases, possess similar redox properties [Bush, 2002],... [Pg.457]

The superoxide oxide radical interacts with nitric oxide to produce peroxynitrite at a rate which three times faster than the rate at which superoxide dismutase utilizes superoxide (Beckman, 1994). Peroxynitrite is capable of diffusing to distant places in neural cells where it induces lipid peroxidation and may be involved in synaptosomal and myelin damage (Van der Veen and Roberts, 1999). After protonation and decomposition, peroxynitrite produces more hydroxyl radicals. This mechanism of hydroxyl radical generation is not dependent on redox active metal ions and may be involved in initiating lipid and protein peroxidation in vivo (Warner et al., 2004). [Pg.207]


See other pages where Metal ion activity is mentioned: [Pg.75]    [Pg.82]    [Pg.169]    [Pg.317]    [Pg.102]    [Pg.103]    [Pg.327]    [Pg.156]    [Pg.109]    [Pg.358]    [Pg.185]    [Pg.262]    [Pg.271]    [Pg.44]    [Pg.322]    [Pg.655]    [Pg.1007]    [Pg.404]    [Pg.458]    [Pg.588]    [Pg.110]    [Pg.387]    [Pg.535]    [Pg.31]    [Pg.288]    [Pg.138]    [Pg.216]   
See also in sourсe #XX -- [ Pg.138 , Pg.139 , Pg.140 , Pg.141 , Pg.142 , Pg.143 , Pg.144 , Pg.145 ]




SEARCH



Ion activity

Ion-activated

Metal-ion activation

© 2024 chempedia.info