Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Energy group, activation

Figure 8. Computed axial conversion profiles for changes of variable G3 (activation energy group)... Figure 8. Computed axial conversion profiles for changes of variable G3 (activation energy group)...
Dimensionless group Dimensionless group Dimensionless concentration Peclet number for mass transfer Peclet number for heat transfer Dimensionless temperature Dimensionless length Activation energy group Dimensionless time... [Pg.396]

All these results are readily interpreted by assuming the existence of two bond shift mechanisms. The first one, which accounts for methyl shift, may be ascribed to the metallocyclobutane mechanism responsible for the group III reactions of n-pentane and isopentane. The second one, which accounts for chain lengthening (and chain shortening) is the same as the mechanism of higher activation energy (group II) responsible for the interconversion between n-pentane and isopentane. The first is very sensitive to alkyl substitution, while the latter seems relatively insensitive to structural effects. [Pg.25]

Figure 12 11 compares the energy profile for nitration of benzene with those for attack at the ortho meta and para positions of (trifluoromethyl)benzene The presence of the electron withdrawing trifluoromethyl group raises the activation energy for attack at all the ring positions but the increase is least for attack at the meta position... [Pg.493]

Steps 2 and 4 are proton transfer reactions and are very fast Nucleophilic addi tion to the carbonyl group has a higher activation energy than dissociation of the tetra hedral intermediate step 1 is rate determining... [Pg.855]

These are the only differences between the MNDO and AMI functional form. Dewar s group regenerated AMI parameters for the elements H, B, C, N, 0, F, Al, Si, P, S, Cl, Zn, Ge, Br, and Sn and found that the main gains in AMI over MNDO were the ability to reproduce hydrogen bonds and the promise of better activation energies for reactions. AMI does not significantly change the computation time compared with MNDO. [Pg.294]

Fig. 23. Representative protecting groups for phenolic and carboxylic acid-based systems, (a) The polymer-based protecting groups are fisted in order of increasing activation energy for acid-catalyzed deprotection, (b) Acid-labile monomeric dissolution inhibitors, a bifunctional system based on protected bisphenol A. (c) Another system that combines the function of dissolution inhibitor and PAG in a single unit. Fig. 23. Representative protecting groups for phenolic and carboxylic acid-based systems, (a) The polymer-based protecting groups are fisted in order of increasing activation energy for acid-catalyzed deprotection, (b) Acid-labile monomeric dissolution inhibitors, a bifunctional system based on protected bisphenol A. (c) Another system that combines the function of dissolution inhibitor and PAG in a single unit.
Polymerization Solvent. Sulfolane can be used alone or in combination with a cosolvent as a polymerization solvent for polyureas, polysulfones, polysUoxanes, polyether polyols, polybenzimidazoles, polyphenylene ethers, poly(l,4-benzamide) (poly(imino-l,4-phenylenecarbonyl)), sUylated poly(amides), poly(arylene ether ketones), polythioamides, and poly(vinylnaphthalene/fumaronitrile) initiated by laser (134—144). Advantages of using sulfolane as a polymerization solvent include increased polymerization rate, ease of polymer purification, better solubilizing characteristics, and improved thermal stabUity. The increased polymerization rate has been attributed not only to an increase in the reaction temperature because of the higher boiling point of sulfolane, but also to a decrease in the activation energy of polymerization as a result of the contribution from the sulfonic group of the solvent. [Pg.70]

In theory two carbanions, (189) and (190), can be formed by deprotonation of 3,5-dimethylisoxazole with a strong base. On the basis of MINDO/2 calculations for these two carbanions, the heat of formation of (189) is calculated to be about 33 kJ moF smaller than that of (190), and the carbanion (189) is thermodynamically more stable than the carbanion (190). The calculation is supported by the deuterium exchange reaction of 3,5-dimethylisoxazole with sodium methoxide in deuterated methanol. The rate of deuterium exchange of the 5-methyl protons is about 280 times faster than that of the 3-methyl protons (AAF = 13.0 kJ moF at room temperature) and its activation energy is about 121 kJ moF These results indicate that the methyl groups of 3,5-dimethylisoxazole are much less reactive than the methyl group of 2-methylpyridine and 2-methylquinoline, whose activation energies under the same reaction conditions were reported to be 105 and 88 kJ moF respectively (79H(12)1343). [Pg.49]

Enzymes increase the rate of chemical reactions by decreasing the activation energy of the reactions. This is achieved primarily by the enzyme preferentially binding to the transition state of the substrate. Catalytic groups of the enzyme are required to achieve a specific reaction path for the conversion of substrate to product. [Pg.219]

Hence the activation energy barrier to dimethylamino group rotation in dimethylacetamide (41) is calculated from equation 9 with k,. = 17.8 at the coalescence point 353 K (Fig. 2.26) ... [Pg.63]


See other pages where Energy group, activation is mentioned: [Pg.418]    [Pg.342]    [Pg.375]    [Pg.27]    [Pg.418]    [Pg.342]    [Pg.375]    [Pg.27]    [Pg.148]    [Pg.153]    [Pg.626]    [Pg.36]    [Pg.210]    [Pg.716]    [Pg.939]    [Pg.977]    [Pg.360]    [Pg.365]    [Pg.126]    [Pg.126]    [Pg.32]    [Pg.263]    [Pg.299]    [Pg.339]    [Pg.433]    [Pg.457]    [Pg.37]    [Pg.517]    [Pg.47]    [Pg.260]    [Pg.540]    [Pg.483]    [Pg.525]    [Pg.63]    [Pg.502]    [Pg.209]    [Pg.212]    [Pg.2133]    [Pg.157]    [Pg.209]    [Pg.128]    [Pg.207]    [Pg.62]    [Pg.178]   
See also in sourсe #XX -- [ Pg.376 ]




SEARCH



Activating groups

Activation energies amino group restricted rotation

Active groups

Energy groups

Group Activation

© 2024 chempedia.info