Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetonitrile properties

Solvent X Acetonitrile Properties of solvent pairs 363 UNIFAC contributions ACN (group 19) 1 ... [Pg.363]

Electron donor molecules are oxidized in solution easily. Eor example, for TTE is 0.33V vs SCE in acetonitrile. Similarly, electron acceptors such as TCNQ are reduced easily. TCNQ exhibits a reduction wave at — 0.06V vs SCE in acetonitrile. The redox potentials can be adjusted by derivatizing the donor and acceptor molecules, and this tuning of HOMO and LUMO levels can be used to tailor charge-transfer and conductivity properties of the material. Knowledge of HOMO and LUMO levels can also be used to choose materials for efficient charge injection from metallic electrodes. [Pg.240]

Isoprene [78-79-5] (2-methyl-1,3-butadiene) is a colorless, volatile Hquid that is soluble in most hydrocarbons but is practically insoluble in water. Isoprene forms binary azeotropes with water, methanol, methylamine, acetonitrile, methyl formate, bromoethane, ethyl alcohol, methyl sulfide, acetone, propylene oxide, ethyl formate, isopropyl nitrate, methyla1 (dimethoxymethane), ethyl ether, and / -pentane. Ternary azeotropes form with water—acetone, water—acetonitrile, and methyl formate—ethyl bromide (8). Typical properties of isoprene are Hsted in Table 1. [Pg.462]

Physical Properties. Ammonium thiocyanate [1762-95-4] NH SCN, is a hygroscopic crystalline soHd which deHquesces at high humidities (375,376). It melts at 149°C with partial isomerization to thiourea. It is soluble in water to the extent of 65 wt % at 25°C and 77 wt % at 60°C. It is also soluble to 35 wt % in methanol and 20 wt % in ethanol at 25°C. It is highly soluble in Hquid ammonia and Hquid sulfur dioxide, and moderately soluble in acetonitrile. [Pg.151]

Apart from TiO and the lower halides already mentioned, the chemistry of these metals in oxidation states lower than 3 is not well established. Addition compounds of the type [TiCl2L2] can be formed with difficulty with ligands such as dimethylformamide and acetonitrile, but their magnetic properties suggest that they also are polymeric with appreciable metal-metal bonding. However, the electronic spectra of Ti in TiCl2/AlCl3 melts and also of Ti incorporated in NaCl crystals (prepared by... [Pg.971]

We had no good way to predict if they would be liquid, but we were lucky that many were. The class of cations that were the most attractive candidates was that of the dialkylimidazolium salts, and our particular favorite was l-ethyl-3-methylimid-azolium [EMIM]. [EMIMJCl mixed with AICI3 made ionic liquids with melting temperatures below room temperature over a wide range of compositions [8]. We determined chemical and physical properties once again, and demonstrated some new battery concepts based on this well behaved new electrolyte. We and others also tried some organic reactions, such as Eriedel-Crafts chemistry, and found the ionic liquids to be excellent both as solvents and as catalysts [9]. It appeared to act like acetonitrile, except that is was totally ionic and nonvolatile. [Pg.5]

Properties of luciferin. The luciferin of Odontosyllis is a highly polar substance. It is soluble in water, methanol, and DMF, but practically insoluble in ra-butanol, ethyl acetate and acetonitrile. The luciferin is strongly adsorbed onto DEAE-cellulose, even under acidic conditions, indicating that the molecule possesses a strong acidic functionality. Although the luciferin is unstable in the presence of air, it is quite stable in dilute methanol under argon at — 20°C. [Pg.228]

The solution of purified dinoflagellate luciferin is yellow, showing absorption maxima at 245 and 390nm in an aqueous solution and at 241 and 388 nm in 40% acetonitrile containing 85 mM NaCl and 3 mM NaHCOs (Fig. 8.4). The compound is strongly fluorescent in blue (excitation maximum at 390 nm, emission maximum at 474 nm Fig. 8.5). The properties of this luciferin are nearly identical with those of the compound F of euphausiid shrimps (Section 3.2). The luciferin is rapidly oxidized in the presence of a trace of oxygen, and also inactivated by a weak acid, even by an acidity of pH 4 or the acidity... [Pg.258]

Properties of luciferin precursors. About one dozen of the luciferin precursors of M. citricolor isolated by HPLC had a strong tendency of isomerization, as mentioned above. Their molecular weights could not be established by mass spectrometry, which is probably due to isomerization, although they appear to be in a range of 300-600. The precursors showed an absorption peak at about 369 nm in methanol and aqueous acetonitrile (Fig. 9.13). According to an NMR study, all precursors probably contain the following common partial structure (personal communication from Dr. H. Nakamura, 1998). [Pg.296]

D. A. Palmer and B. D. Smith, Thermodynamic Excess Property Measurements for Acetonitrile-Benzene-n-Heptane System at 45 C". J. Client. Eng. Data, 17. 71-76 (1972). [Pg.382]

However, an evaluation of the observed (overall) rate constants as a function of the water concentration (5 to 25 % in acetonitrile) does not yield constant values for ki and k2/k i. This result can be tentatively explained as due to changes in the water structure. Arnett et al. (1977) have found that bulk water has an H-bond acceptor capacity towards pyridinium ions about twice that of monomeric water and twice as strong an H-bond donor property towards pyridines. In the present case this should lead to an increase in the N — H stretching frequency in the o-complex (H-acceptor effect) and possibly to increased stabilization of the incipient triazene compound (H-donor effect). Water reduces the ion pairing of the diazonium salt and therefore increases its reactivity (Penton and Zollinger, 1971 Hashida et al., 1974 Juri and Bartsch, 1980), resulting in an increase in the rate of formation of the o-complex (ik ). [Pg.397]

When polypyrrole was electrogenerated from dry acetonitrile electrolytes, a black polymer grew and adhered to the electrode. After a few seconds of electropolymerization, a black cloud was observed around the electrode. The film obtained had poor electrochemical and physical properties. Increasing the water content to 2% (w/w) gives, at 800 mV, films with improved properties. The black cloud around the electrode disappears. [Pg.329]

Figure 5. Cyclic voltammograms of (a) 2,5"" -di-methyl-a-hexathiophene and (b) poly(2,2 -bithio-phene) films in acetonitrile containing 0.1 M E NCIO 103 (Reprinted from G. Zotti, G. Schia-von, A. Berlin, and G. Pagani, Electrochemistry of end-ca )ed oligothienyls-new insights into the polymerization mechanism and the charge storage, conduction and capacitive properties of polythiophene, Synth. Met. 61 (1-2) 81-87, 1993, with kind permission from Elsevier Science S.A.)... Figure 5. Cyclic voltammograms of (a) 2,5"" -di-methyl-a-hexathiophene and (b) poly(2,2 -bithio-phene) films in acetonitrile containing 0.1 M E NCIO 103 (Reprinted from G. Zotti, G. Schia-von, A. Berlin, and G. Pagani, Electrochemistry of end-ca )ed oligothienyls-new insights into the polymerization mechanism and the charge storage, conduction and capacitive properties of polythiophene, Synth. Met. 61 (1-2) 81-87, 1993, with kind permission from Elsevier Science S.A.)...
The coordination of redox-active ligands such as 1,2-bis-dithiolates, to the M03Q7 cluster unit, results in oxidation-active complexes in sharp contrast with the electrochemical behavior found for the [Mo3S7Br6] di-anion for which no oxidation process is observed by cyclic voltammetry in acetonitrile within the allowed solvent window [38]. The oxidation potentials are easily accessible and this property can be used to obtain a new family of single-component molecular conductors as will be presented in the next section. Upon reduction, [M03S7 (dithiolate)3] type-11 complexes transform into [Mo3S4(dithiolate)3] type-I dianions, as represented in Eq. (7). [Pg.114]

Dynamic light-scattering experiments or the analysis of some physicochemical properties have shown that finite amounts of formamide, A-methylformamide, AA-dimethyl-formamide, ethylene glycol, glycerol, acetonitrile, methanol, and 1,2 propanediol can be entrapped within the micellar core of AOT-reversed micelles [33-36], The encapsulation of formamide and A-methylformamide nanoclusters in AOT-reversed micelles involves a significant breakage of the H-bond network characterizing their structure in the pure state. Moreover, from solvation dynamics measurements it was deduced that the intramicellar formamide is nearly completely immobilized [34,35],... [Pg.476]

In a recent study, poly(aryl ether) dendritic branches terminated with triethyleneglycol chains were attached to Cgg [66] dendrimer 32 represents the fourth generation. The photophysical properties of these fullerodendrimers have been systematically investigated in three solvents, namely toluene, dichloromethane, and acetonitrile. On increasing dendrimer generation, it has been found that in each solvent (i) the maximum of the fullerene fluorescence band is red-shifted... [Pg.180]

The donor properties of N3P3CI6 appear to be too weak to allow complex formation with metal halides, but it has been reported that complex formation between N3P3Cl5 NHBu" and Cu" or Co" chlorides in acetonitrile solutions can be detected by u.v. spectroscopy. Attempts to isolate the complexes were unsuccessful. [Pg.217]

This reaction can proceed by 1,1-proton abstraction to form a carbene radical anion, but can also occur by l,n-abstraction to form the negative ion of a diradical. Thus, reaction of O with methylene chloride results in the formation of CCI2 (Eq. S.Sa), reaction with ethylene gives vinylidene radical anion, H2CC (Eq. 5.8b), and the reaction with acetonitrile gives the radical anion of cyanomethylene, HCCN (Eq. 5.8c) Investigations of these ions have been used to determine the thermochemical properties of dichlorocarbene, CCI2, vinylidene, and cyanomethylene. ... [Pg.226]


See other pages where Acetonitrile properties is mentioned: [Pg.43]    [Pg.54]    [Pg.218]    [Pg.218]    [Pg.236]    [Pg.536]    [Pg.99]    [Pg.624]    [Pg.127]    [Pg.365]    [Pg.140]    [Pg.167]    [Pg.209]    [Pg.167]    [Pg.655]    [Pg.165]    [Pg.31]    [Pg.330]    [Pg.344]    [Pg.136]    [Pg.59]    [Pg.324]    [Pg.107]    [Pg.661]    [Pg.156]    [Pg.244]    [Pg.266]    [Pg.20]    [Pg.337]    [Pg.525]    [Pg.141]    [Pg.239]   
See also in sourсe #XX -- [ Pg.7 ]




SEARCH



Acetonitrile physical properties

Acetonitrile physicochemical properties

Acetonitrile solvent properties

Acetonitrile thermodynamic properties

Acetonitrile-water mixtures, dependence properties

© 2024 chempedia.info